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Many real-life applications nowadays feature functions of d
variables with d � 1, i.e. d ≈ 103

Searching for metastable states of proteins:

Describe the shape of the protein by
hundreds of parameters

Find the local minima of the energy as a
function of these parameters

Evaluating global parameters of financial
markets
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Classical problems of approximation theory

Let f : Ω ⊂ Rd → R be a function of many (d � 1) variables

We may want to (with n small)

• approximate

∫
Ω

f using only function values f (x1), . . . , f (xn)

• approximate f using only function values f (x1), . . . , f (xn)

• approximate

∫
Ω

f using only values of linear functionals

L1(f ), . . . , Ln(f )

• approximate f using only values of linear functionals
L1(f ), . . . , Ln(f )
...
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Questions

• Which functions (assumptions on f )?

• How to measure the error?

• Decay of the error with growing number of sampling points?

• Algorithms and optimality?

• Dependence on d?

. . . the nature of these problems is well understood for small d ’s. . .

5/44



Introduction IBC & Tractability Ridge functions

Curse of dimension

Many classical problems suffer from exponential dependence of the
results on d!

Example: Uniform approximation of smooth functions

• Let f ∈ Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ Nd
0}

• Uniform approximation - the error is measured in ‖ · ‖∞
• uniform approximation of infinitely differentiable functions on

Ω = [0, 1]d

• initial error - approximation by zero function.

Novak, Woźniakowski (2009): Initial error is the same as error of
uniform approximation for n ≤ 2bd/2c − 1
. . . curse of dimension!
. . . the number of sampling points must grow exponentially in d

Smoothness does not help!
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Function spaces

In the classical setting of small d we usually consider

• Ck(Ω) - k-times continuously differentiable functions

• W s
p (Ω) - Sobolev spaces with smoothness s and integrability p

• Bs
p,q(Ω) - Besov spaces with smoothness s, integrability p and

summability q

• F s
p,q(Ω) - Triebel-Lizorkin spaces with smoothness s,

integrability p and summability q

• Other classes adapted to problems under consideration
(weighted spaces, boundary values, anisotropic spaces, . . . )
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Sampling numbers
. . . describe approximation of a function from limited number of
function values

Fd - a class of d-variate functions on Ωd ⊂ Rd ,Fd ⊂ C (Ωd)
(the continuity of f makes function values meaningful)

Information map: N : Fd → Rn, N(f ) = (f (x1), . . . , f (xn)) ∈ Rn

Continuous recovery map: (linear or not) φ : Rn → L∞(Ωd)

Sampling operator: Sn = φ ◦ N : Fd → L∞(Ωd)

Modifications:

• Linear information: L1(f ), . . . , Ln(f )

• Adaptivity: xj may depend on x1, . . . , xj−1 and on
f (x1), . . . , f (xj−1)

• Numerical integration: Sn : Fd → R
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Sampling numbers

Approximation error: e(Sn) := supf ∈Fd
‖f − Sn(f )‖∞

. . . consider the worst function for your algorithm. . .

Sampling numbers: gn,d(Fd , L∞) := infSn e(Sn)

. . . the error of the “best algorithm” when using only n function
values. . .

Its inverse function: n(ε, d) = min{n ∈ N : gn,d(Fd , L∞) ≤ ε}
. . . minimal number of sampling points needed to achieve an
approximation of the error at most ε > 0. . .
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Sampling numbers: general setting
If Fd is a unit ball of a function space X (Ωd) ⊂ C (Ωd) and the
error is measured in Y (Ωd), then

gn,d(Fd ,Y (Ωd)) = inf
Sn

sup
‖f ‖X (Ωd )≤1

‖f − Sn(f )‖Y (Ωd )

= inf
Sn
‖I − Sn : L(X (Ωd),Y (Ωd))‖

Well known for many classical function spaces, like Sobolev spaces,
Besov spaces, Triebel-Lizorkin spaces, etc.

Typical decay: n−s/d

Birman, Solomyak, Temlyakov, Kudryavtsev, Kashin, DeVore,
Maiorov, Kruglyak, Heinrich, Novak, Triebel, and many others . . .

Novak & Woźniakowski: Tractability of Multivariate Problems,
Volumes II & III
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Theorem (V.’07): Let Ωd = [0, 1]d and

s1 >
d

p1
and s1 − d

( 1

p1
− 1

p2

)
+
> s2 > 0.

Then

gn,d(Bs1
p1,q1

(Ωd),Bs2
p2,q2

(Ωd)) ≈ n
− s1−s2

d
+( 1

p1
− 1

p2
)+ .

If

s1 >
d

p1
and s2 < 0,

then

gn,d(Bs1
p1,q1

(Ωd),Bs2
p2,q2

(Ωd)) ≈ n
− s1

d
+(

s2
d
− 1

p2
+ 1

p1
)+ .
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Information Based Complexity
a.k.a. IBC

Studies

• algorithms

• computational complexity

for the continuous problems

• very-high-dimensional integration

• path integration

• partial differential equations

• systems of ordinary differential equations

• nonlinear equations

• integral equations

• fixed points
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Tractability
Different notions to describe the growth of n(ε, d)

• Polynomial tractability: ∃c , p, q > 0

n(ε, d) ≤ cε−pdq for all 0 < ε < 1, d ∈ N

• Quasi-polynomial tractability: ∃C , t > 0

n(ε, d) ≤ C exp(t(1 + ln(ε−1))(1 + ln d))

• Weak tractability:

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0

• Curse of dimension: ∃c , γ > 0

n(ε, d) ≥ c(1 + γ)d for all 0 < ε < ε0 and inf. many d ’s
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Theorem (Novak, Woźniakowski ’09)
Uniform approximation on the cube [0, 1]d of functions from the
class

F 1
d =

{
f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ Nd

0

}
suffers the curse of dimension:

gn,d(F 1
d , L∞) = 1 for n ≤ 2bd/2c − 1

or, equivalently,

n(ε, d) ≥ 2bd/2c − 1 for all 0 < ε < 1.
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Theorem (V. ’14): Uniform approximation on the cube
[−1/2, 1/2]d of functions from the class

F 2
d =

{
f ∈ C∞([−1/2, 1/2]d) : sup

k∈N0

∑
|β|=k

‖Dβf ‖∞
β!

≤ 1
}

is weakly tractable, ie.

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0.

. . . similar results for other norms, domains, . . . based on Taylor’s
theorem or other “constructive” techniques

. . . A. Hinrichs, E. Novak, M. Ullrich, H. Woźniakowski, P. Kritzer,
F. Pillichshammer, J. Dick, . . .
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Discrepancy

. . . uniform distribution of points in the unit cube . . .
Sequence of points: x1, . . . , xn ∈ [0, 1]d

Rectangle: Q(t, t ′) = [t1, t
′
1]× · · · × [td , t

′
d ] ⊂ [0, 1]d

We expect (on the average)

#{i : xi ∈ Q(t, t ′)} =
n∑

i=1

χQ(t,t′)(xi )

∼ n · (t ′1 − t1) · · · · · (t ′d − td) = n vol(Q(t, t ′))

Discrepancy:

D∞(x1, . . . , xn) = sup
Q⊂[0,1]d

∣∣∣vol(Q)− 1

n

n∑
i=1

χQ(xi )
∣∣∣
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Star discrepancy
Star discrepancy (t = 0):

D∗∞(x1, . . . , xn) = sup
t′∈[0,1]d

∣∣∣vol(Q(0, t ′))− 1

n

n∑
i=1

χ[0,t′)(xi )
∣∣∣
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Star discrepancy

Looking for a sequence with low discrepancy:

n(ε, d) = min{n ∈ N : ∃x1, . . . , xn : D∗∞(x1, . . . , xn) ≤ ε}

Heinrich, Novak, Wasilkowski, Woźniakowski (’01):
n(ε, d) ≤ Cdε−2

Hinrichs (’04):
n(ε, d) ≥ cdε−1, 0 < ε < ε0
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Dominating mixed smoothness

Function spaces defined through mixed derivatives
Usual scales: Sobolev, Besov, Triebel-Lizorkin, . . .

For example, f ∈W 1,mix
p (R2):

f ∈ Lp(R2),
∂f

∂x1
∈ Lp(R2),

∂f

∂x2
∈ Lp(R2)

but most importantly

∂2f

∂x1∂x2
∈ Lp(R2)

Shortly: Dαf ∈ Lp for all ‖α‖∞ ≤ 1
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Dominating mixed smoothness
Numerical integration:

e(An) = sup
f ∈Fd

∣∣∣An(f )−
∫

Ωd

f
∣∣∣

e(n,Fd) = inf
An

e(An) = inf
An

sup
f ∈Fd

∣∣∣An(f )−
∫

Ωd

f
∣∣∣

Theorem (Bakhvalov, ’71) If Fd is convex and balanced,

e(n,Fd) = inf
x1,...,xn∈Ωd

sup
f ∈Fd

N(f )=0

∫
Ωd

f

Ωd = [0, 1]d , 1 < p <∞

e(n, {f : Ωd → R : ‖Dαf ‖∞ ≤ 1, ‖α‖1 ≤ k}) ≈ n−k/d

e(n, {f : Ωd → R : ‖Dαf ‖p ≤ 1, ‖α‖∞ ≤ k}) ≈ n−k(log n)(d−1)/2
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Hlawka-Zaremba-equality

W 1,mix
1 ([0, 1]d), zero on the boundary:

Fd :=
{∥∥∥ ∂d f

∂x1 . . . ∂xd

∥∥∥
1
≤ 1, f (x) = 0 if ∃i : xi = 1

}

Connection between star discrepancy and the error of numerical
integration on Fd

D∗∞(x1, . . . , xn) = sup
f ∈Fd

∣∣∣∫
[0,1]d

f − 1

n

n∑
j=1

f (xj)
∣∣∣
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Lower bounds in IBC

What to do if f (x1) = · · · = f (xn) = 0?
. . . or . . . L1(f ) = · · · = Ln(f ) = 0? . . . or Nn(f ) = 0?

Best choice of φ(0) : the “center” of {f ∈ Fd & Nn(f ) = 0}
and (for Fd ⊂ X symmetric and convex)

gn,d(Fd ,Y ) ≥ inf
M⊂⊂X

codimM≤n

sup
f ∈Fd∩M

‖f ‖Y

= cn+1(Fd ,Y )

Lower bounds on sections of (convex) bodies?
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Gelfand numbers
For T : X → Y bounded linear operator

cn(T ) = inf
M⊂⊂X

codim M<n

sup
x∈M
‖x‖X≤1

‖Tx‖Y

Carl’s inequality (1981):

sup
1≤k≤n

kαek(T ) ≤ cα sup
1≤k≤n

kαsk(T ).

Entropy numbers:

en(T ) = inf
{
ε > 0 : T (BX ) ⊂

2n−1⋃
j=1

(yj + εBY )
}
.

Hinrichs, Kolleck, V. (2016): Carl’s inequality holds also for
quasi-Banach spaces.
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New classes of function spaces

Starting point:
Approximation theory in high dimensions is very specific!

• Some problems are just intractable - and will always be:
curse of dimension

• It is important to look for alternative formulations

• Probabilistic formulations//probabilistic algorithms
blessing of dimension

• High-dimensional problems call for tailored settings - i.e.
function spaces defined not (only) by integrability and
smoothness

• Dimensionality reduction: the amount of information is
usually much smaller than the dimension would suggest

24/44
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Ridge functions - definition

Let g : R→ R and a ∈ Rd \ {0}. Ridge function with ridge profile
g and ridge vector a is the function

f (x) := g(〈a, x〉).

Constant along the hyperplane a⊥ = {y ∈ Rd : 〈y , a〉 = 0} and its
translates.

More general, if g : Rk → R and A ∈ Rk×d with k � d then

f (x) := g(Ax)

is a k−ridge function.
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Ridge functions in mathematics

• Kernels of important transforms (Fourier, Radon)

• Plane waves in PDE’s:
Solutions to r∏

i=1

(
bi
∂

∂x
− ai

∂

∂y

)
F = 0

are of the form

F (x , y) =
r∑

i=1

fi (aix + biy).

• Ridgelets, curvelets, shearlets,. . . : wavelet-like frames
capturing singularities along curves and edges (Candes,
Donoho, Kutyniok, Labate, . . . )
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Ridge functions in approximation theory

Approximation of a function by functions from the dictionary

Dridge = {%(〈k, x〉 − b) : k ∈ Rd , b ∈ R}

• Fundamentality

• Greedy algorithms

Lin & Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993),
no. 3, 295–311

Cybenko, Approximation by superpositions of a sigmoidal function, Math.
Control Signals Systems 2 (1989), 303–314

Leshno, Lin, Pinkus & Schocken, Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function, Neural
Networks 6 (1993), 861–867
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Ridge functions in statistical learning

• Least squares & ridge regression

• Phase retrieval

• Neural networks

• Single index models

• Support vector machines
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Approximation algorithms

1. Buhmann & Pinkus ’99

2. Cohen, Daubechies, DeVore, Kerkyacharian, Picard ’12

3. Fornasier, Schnass, V. ’12

4. Tyagi & Cevher ’12, ’14

5. Kolleck, V. ’15
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Ridge functions: Approximation algorithms

k = 1: f (x) = g(〈a, x〉), ‖a‖2 = 1, g smooth

Approximation has two parts: approximation of g and of a

Recovery of a - from ∇f (x):

∇f (x) = g ′(〈a, x〉)a,∇f (0) = g ′(0)a.

After recovering a, the problem becomes essentially
one-dimensional and one can use arbitrary sampling method to
approximate g .

g ′(0) 6= 0. . . g ′(0) = 1
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Buhmann & Pinkus ’99
Identifying linear combinations of ridge functions

Approximation of functions

f (x) =
m∑
i=1

gi (〈ai , x〉), x ∈ Rd

• gi ∈ C 2m−1(R), i = 1, . . . ,m;

• g
(2m−1)
i (0) 6= 0, i = 1, . . . ,m;

(D2m−1−k
u Dk

v f )(0) =
m∑
i=1

(〈u, ai 〉)2m−1−k(〈v , ai 〉)kg
(2m−1)
i (0)

for k = 0, . . . , 2m − 1 and v1, . . . , vd ∈ Rd and solving this system
of equations.
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A.Cohen, I.Daubechies, R.DeVore, G.Kerkyacharian, D.Picard, Cap-
turing ridge functions in high dimensions from point queries,
Constr. Approx. (2012)

• k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)
• f : [0, 1]d → R
• g ∈ C s([0, 1]), 1 < s

• ‖g‖C s ≤ M0

• ‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1

• a ≥ 0a ≥ 0a ≥ 0

Then

‖f − f̂ ‖∞ ≤ CM0

{
L−s + M1

(
1 + log(d/L)

L

)1/q−1
}

using 3L + 2 sampling points
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• First sampling along the diagonal
i
L1 = i

L(1, . . . , 1), i = 0, . . . , L :

f
( i

L
1
)

= g
(〈 i

L
1, a
〉)

= g(i‖a‖1/L)

• Recovery of g on a grid of [0, ‖a‖1]

• Finding i0 with largest g((i0 + 1)‖a‖1/L)− g(i0‖a‖1/L)

• Approximating Dϕj f (i0/L · 1) = g ′(i0‖a‖1/L)〈a, ϕj〉 by first
order differences

• Then recovery of a from 〈a, ϕ1〉, . . . , 〈a, ϕm〉 by methods of
compressed sensing (CS)
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Shortly on Compressed Sensing
Recover arbitrary x ∈ Rd from linear information about x :

x =
d∑

j=1

〈x , ψj〉ψj

If x ∈ Rd is sparse (with small number s of non-zero coefficients
on unknown positions), take ψj ’s independently at random and
recover x exactly by LASSO (Tibshirani, 1996) from the linear
information yj = 〈x , ψj〉:

arg min
ω∈Rd

‖ω‖1, s.t. 〈ω, ψj〉 = yj , j = 1, . . . ,m,

where m ≈ s log(d).

`1-minimization is robust (w.r.t. noise) and stable (defects of
sparsity)
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M. Fornasier, K. Schnass, J. V., Learning functions of few arbitrary
linear parameters in high dimensions, Found. Comput. Math. (2012)

• f : B(0, 1)→ R

• ‖a‖2 = 1

• 0 < q ≤ 1, ‖a‖q ≤ c

• g ∈ C 2[−1, 1]

Put

yj :=
f (hϕj)− f (0)

h
≈ g ′(0)〈a, ϕj〉, j = 1, . . . ,mΦ, mΦ ≤ d ,

where h > 0 is small, and

ϕj ,k = ± 1
√

mΦ
, k = 1, . . . , d

35/44
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yj are scalar products 〈a, ϕj〉 corrupted by deterministic noise

ã = arg min
z∈Rd

‖z‖1, s.t. 〈ϕj , z〉 = yj , j = 1, . . . ,mΦ.

â = ã/‖ã‖2 - approximation of a

ĝ is obtained by sampling f along â: ĝ(y) := f (â · t), t ∈ (−1, 1).

Then
f̂ (x) := ĝ(〈â, x〉),

has the approximation property

‖f − f̂ ‖∞ ≤ C
[( mΦ

log(d/mΦ) + 1

)−( 1
q
− 1

2

)
+

h
√

mΦ

]
.
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Active coordinates:
R. DeVore, G. Petrova, P. Wojtaszczyk, Approximation of functions of few
variables in high dimensions, Constr. Appr. ’11

K. Schnass, J.V., Compressed learning of high-dimensional sparse functions,

Proceedings of ICASSP ’11

f (x) = g(xi1 , . . . , xik )

Use of low-rank matrix recovery:
H. Tyagi, V. Cevher, Learning non-parametric basis independent models from

point queries via low-rank methods, ACHA ’14
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A. Kolleck, J. V., On some aspects of approximation of ridge func-
tions, JAT ’15: ridge functions on a cube

• f : [−1, 1]d → R
• h > 0 small

• ‖a‖1 = 1, s-sparse

• b̃j :=
f (hϕj)− f (0)

h
, j = 1, . . . ,m; m ≥ cs log(d);

• â obtained by `1 minimization;

• ĝ(t) := f (t · sign(â)).

• f̂ (x) := ĝ(〈â, x〉)

Then

‖f − f̂ ‖∞ ≤ 2c0‖â− a‖ld1 ≤ C
h

g ′(0)− c1h
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sign(x) := (sign(xi ))i ∈ Rd .

• Discontinuous;

• 〈a, sign(a)〉 = ‖a‖1;

• The scalar product of sign(a) and sign(â) with a is nearly the
same:

|〈a, sign(a)− sign(â)〉|
= |〈a, sign(a)〉 − 〈â, sign(â)〉 − 〈a− â, sign(â)〉|
≤ ‖a− â‖ld1 ‖ sign(â)‖ld∞
= ‖a− â‖ld1 .
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S. Mayer, T. Ullrich, and J. V., Entropy and sampling numbers of
classes of ridge functions, Constr. Approx. (2015)

Tractability of approximation of ridge functions
Positive results based on the formula ∇f (x) = g ′(〈a, x〉)a

. . . is that optimal?

Rα,pd =
{

f : B(0, 1) ⊂ Rd → R : f (x) = g(〈a, x〉),

‖g‖Lipα[−1,1] ≤ 1, ‖a‖p ≤ 1
}

α > 0: Lipschitz smoothness of profiles

α =∞: infinitely differentiable profiles

0 < p ≤ 2: restriction of ridge directions

Rα,p,κd : functions from Rα,pd with |g ′(0)| ≥ κ > 0
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Uniform approximation of functions from Rα,pd

• suffers from the curse of dimension if p = 2 and α <∞,

• never suffers from the curse of dimension if p < 2,

• is intractable if p < 2 and α ≤ 1
1/p−1/2 ,

• is weakly tractable if p < 2 and α > 1
1/max{1,p}−1/2 ,

• is quasi-polynomially tractable if α =∞,

• for Rα,p,κd it is polynomially tractable, no matter what the
values of α and p are.
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Estimates from below are mainly based on “bad profiles” with
g ′(0) = 0:

g(x) = 0 for −1 ≤ x ≤ 1/2
f (x) = 0 for {x : ‖x‖2 ≤ 1 & 〈x , a〉 ≤ 1/2}

Concentration of measure: The measure of the cap
{x : ‖x‖2 ≤ 1 & 〈x , a〉 > 1/2} is exponentially small in d
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Summary

• Non-linear, non-convex classes

• Sparsity and other structural assumptions

• Compressed Sensing, low-rank matrix recovery, . . .

• Linear information for ridge functions?
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Thank you for your attention!
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