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Topics

• Adaptive wavelet methods for solving linear and nonlinear operator
equations

• Application to space-time variational formulation of parabolic PDEs

• Application to space-time variational formulation of instat. (N)SE
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Intoduction & motivation

Consider

{
−4u = f on Ω ⊂ IR2,

u = 0 on ∂Ω.
or, in variational form: u ∈ H1

0(Ω)

s.t. ∫
Ω

gradu · grad v dx =
∫

Ω
fv dx (v ∈ H1

0(Ω)).

For closed subsp. S ⊂ H1
0(Ω), solve problem on S (Galerkin), giving best

approximation from S w.r.t. | · |H1(Ω).

Take S cont. piecewise pols of order p ≥ 2, zero on bdr, w.r.t. a
triangulation of Ω (finite element space). Then for a quasi-uniform
triangulation, with N := dimS,

|u− uS|H1(Ω) . N−
p−1
n |u|Hp(Ω).

On a polygon with maximal interior angle α (∈ [π3 , 2π]), u ∈ Hs(Ω) for

s < 1 + π
α only. Rate p−1

n reduces to s−1
n .

Optimal rate p−1
n can be retrieved by proper local refinements when

u ∈ Bpτ,q(Ω) for τ > (1
2 + p

2)−1 ([BDDP02]); and, for sufficiently smooth f ,
latter holds true ([DD97]).
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Introduction & motivation

Wavelets

Adaptive methods aim at constructing iteratively a seq. of quasi-optimal
meshes based on a posteriori information.Instead of adaptive fem, talk is
about adaptive wavelet methods. Now S is spanned by (adaptively chosen)
(nested) subsets of wavelet basis for H1

0(Ω). Not restricted to elliptic
problems.

• Orthogonal wavelet basis Ψ = {ψλ : λ ∈ ∇} for L2(0, 1) (properly scaled,
Riesz basis for Hs(0, 1) for s ∈ (−1

2,
1
2)):

shift & dilation

Figure 1: Haar wavelets ψλ with levels |λ| = 0, 1, .., diam suppψλ h 2−|λ|

• Riesz basis of continuous piecewise
polynomial wavelets for Hs(Ω) (Hs

0(Ω)) for
s ∈ (−s0,

3
2) (also on polytopes in n > 1

dimensions):
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Setting: Well-posed (lin.) op. eqs.

Let X , Y be sep. Hilbert spaces (over IR). Let B ∈ Lis(X ,Y ′). Given
f ∈ Y ′, we seek u ∈ X s.t.

Bu = f.

Ex.:

• (Bw)(v) :=
∫

Ω
gradw · grad v, X = Y := H1

0(Ω) (Poisson problem),

• (B(~w, p))(~v, q) :=
∫

Ω
grad ~w : grad~v −

∫
Ω
p div~v −

∫
Ω
q div ~w, X =

Y := H1
0(Ω)n×L2(Ω)/IR for a domain Ω ⊂ IRn (stat. Stokes problem),

• (Bw)(v) := 1
4π

∫
∂Ω

∫
∂Ω

(w(y)−w(x))(v(y)−v(x))
|x−y|3 dxdy, Ω ⊂ IR3, X = Y :=

H
1
2(∂Ω)/R (hypersingular boundary integral equation).

• ODE’s, parabolic problems, instat. Stokes: X 6= Y.
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Reformulation as well-posed bi-infinite MV eq

Let ΨX = {ψXλ : λ ∈ ∇X}, ΨY = {ψYλ : λ ∈ ∇Y} Riesz bases for X , Y (we

have wavelet bases in mind). That is, the synthesis operator,

FX : c 7→ c>ΨX :=
∑
λ∈∇X

cλψ
X
λ ∈ Lis(`2(∇X ),X ),

and so its adjoint, the analysis operator,

F ′X : g 7→ g(ΨX ) := [g(ψXλ )]λ∈∇X ∈ Lis(X ′, `2(∇X )).

(analogously for FY).

Bu = f ⇐⇒ F ′YBFX︸ ︷︷ ︸
B

F−1
X u︸ ︷︷ ︸
u

= F ′Yf︸︷︷︸
f

,

where
B = (BΨX )(ΨY) ∈ Lis(`2(∇X ), `2(∇Y))

(infinite “stiffness” matrix),

f = f(ΨY) ∈ `2(∇) (infinite “load” vector).
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Adaptive Wavelet-Galerkin scheme (Bu = f)

([CDD01]) Let X = Y, ΨX = ΨY, and B = B′ > 0, so that B = B> > 0.
Otherwise apply the following to B>Bu = B>f .

Goal: To generate sequence of approx. to u that, whenever for some s > 0,
‖u‖As := supN N

s‖u − uN‖ < ∞, converges with this rate s, at linear
cost. (Here uN is a best approx. to u with # supp uN ≤ N .)

Notations: Λ ⊆ ∇, IΛ : `2(Λ)→ `2(∇), RΛ = I>Λ : `2(∇)→ `2(Λ),

BΛ := RΛBIΛ, uΛ := B−1
Λ RΛf , ||| · ||| := 〈B·, ·〉12

(we will identify uΛ with IΛuΛ).

awgm: • Solve BΛiuΛi = RΛif ;
• Λi+1 ⊃ Λi by bulk chasing on f −BuΛi;
• repeat with i := i+ 1
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awgm

Prop 1 ([CDD01]). Let θ ∈ (0, 1], Λ ⊂ Ξ ⊂ ∇, s.t.

‖RΞ(f −BuΛ)‖ ≥ θ‖f −BuΛ‖.

Then |||u− uΞ||| ≤ [1− κ(B)−1θ2
]1

2|||u− uΛ|||.
Prop 2 ([GHS07]). If θ < κ(B)−

1
2 and Ξ is the smallest set satisfying

bulk chasing criterium, then #(Ξ\Λ) ≤ N for smallest N s.t.

|||u− uN ||| ≤ [1− θ2κ(B)]
1
2|||u− uΛ|||.

Corol 1. awgm realizes optimal rate s,

but, in this form, it is not implementable.

Thm 1. awgm with approx. eval. of residual f − BuΛ and approx.
solution of BΛuΛ = RΛf within suff. small, but fixed rel. tolerance δ,
also converges with optimal rate s,
and, if such approx. residual eval. takes O(‖u−uΛ‖−1/s+#Λ) operations
(cost condition), then scheme has optimal comput. compl.
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Nonlinear operator equations

([XZ03, Ste14]) Theorem 1 generalizes to equations

F (u) = 0

for F : X ⊃ dom(F )→ Y ′, written as

F(u) = 0,

where F := F ′YFFX , assuming that X = Y, DF (u) ∈ Lis(X ,X ′) and
DF (u) = DF (u)′ > 0,

or

written as
DF(u)>F(u) = 0,

only assuming that DF (u) ∈ Lis(X ,Y ′).
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Cost condition

Approx. res. eval. scheme from [CDD01] exploits near-sparsity of
f and B, consequences of the vanishing moments, and that of uΛi

(‖uΛi‖As . ‖u‖As).

Satisfies cost condition, but is quantitatively costly.

A much more efficient scheme is possible when the application of operator
to a wavelet ‘lands’ in L2. It generalizes to nonlinear operators.
Since construction of wavelets with required smoothness is cumbersome in
more than one dimensions, we advocate to write a well-posed 2nd order
operator equation as a well-posed 1st order least squares system. Always
possible.
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Application: Parabolic problems

Ω ⊂ IRn, I = (0, T ). 
∂u
∂t −4u = f on I× Ω,

u = 0 on I× ∂Ω,
u(0, ·) = 0 on Ω.

• −4 can be read as semi-linear elliptic operator.

• other (inhom) initial or boundary conditions are allowed.

Standard appr.: Approx. ∂u
∂t (t, ·) by, say u(t,·)−u(t−h,·)

h , and solve seq. of
elliptic problems for 0 < t1 < t2 < · · · < tM = T

{
−4u(ti, ·)− (ti − ti−1)−1u(ti, ·) = (ti − ti−1)−1u(ti−1, ·) + f(ti, ·) on Ω

u(ti, ·) = 0 on ∂Ω

• How to distribute optimally ‘grid points’ over space and time?

• Even if you can, approximation not effective for singularities that are local in space and

time.

• Inherently sequential.

• When the whole time evolution is needed, as with problems of optimal control or in

visualizations, huge amount of storage.
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Space-time variational formulation

(Bu)(v) :=
∫

I

∫
Ω
∂u
∂tv + gradu · grad v dxdt =

∫
I

∫
Ω
fv dxdt := f(v).

B ∈ Lis
(
L2(I;H1

0(Ω)) ∩H1
0,{0}(I;H

−1(Ω))︸ ︷︷ ︸
U :=

, L2(I;H1
0(Ω))︸ ︷︷ ︸

V :=

′
)

(e.g. [LM70]).

After selecting Riesz ΨU , ΨV for U , V , apply awgm to B>(Bu− f) = 0,
where B := (BΨU )(ΨV ), f := f(ΨV ).

(even better first to write it as a well-posed first order system).

• Since U and V are (intersections of) tensor products of Hilbert spaces
of temporal and spatial functions, they can be equipped with tensor
products of temporal and spatial wavelet collections.

• Conseq., for suff. smooth sol, rate of best N -term approximation equals
that for the corresponding stationary problem (cf. sparse grids or
hyperbolic cross approx.).

(Charac. of approx. classes as tensor product of Besov spaces (cf.
[Nit06, HS12]), and corresponding reg. theory known for the elliptic case
seem open.)
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First test on an ODE{
du(t)
dt + νu(t) = g(t) (t ∈ I),

u(0) = u0,

(Bν)(v) :=
∫

I
−u(t)dv(t)

dt + νu(t)v(t)dt, f(v) :=
∫

I
g(t)v(t)dt+ u0v(0).

Prop 3. With X := L2(I) and Yν := H1
0,{T}(I), equipped with ‖ · ‖Yν :=√

ν2‖ · ‖2L2(I) + | · |2
H1(I)

, the operator Bν ∈ Lis(X ,Y ′ν) and κ(Bν) ≤ 2.

Num. results for ν = 1, g = 1 on (0, 1
3), g = 2 on (1

3, 1), u0 = 0 or u0 = 1:
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ODE

Uniform, non-adaptive refinements, i.e. collect all wavelets (of order 3) up
to some level.

Rate = 1.5
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ODE

Adaptive refinements, i.e. awgm

Rate = 3
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Some approximations
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Some approximations

2 wavelets
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Some approximations

3 wavelets

17/30



Some approximations

4 wavelets
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Some approximations

5 wavelets (all scaling functions are now in)
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Some approximations

15 wavelets
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ODE

Results for wavelets of order 5:

10
0

10
1

10
2

10
3

10
4

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Figure 2: ‖Buε − f‖/‖f‖ vs. #supp uε for u0 = 1 (solid lines) and u0 = 0
(dashed lines).
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ODE
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Figure 3: For u0 = 1 and #uε = 202, the non-zero coefficients of uε.
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Numerical results heat eqn
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Figure 4: Heat eqn. in n = 1 spatial dimension, right-hand side g = 1
and initial condition u0 = 0. ‖Buε − f‖/‖f‖ vs. N = #supp uε for the
awgm (solid), full-grid (dashed) and sparse-grid method (dashed-dotted).

The dotted line is a multiple of N−5(logN)51
2.
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Numerical results heat eqn
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Figure 5: Heat eqn. in n = 1 spatial dimension, right-hand side g = 1 and
initial condition u0 = 1. ‖Buε − f‖/‖f‖ vs. N = #supp uε for the awgm

(solid). The dotted line is a multiple of N−5(logN)51
2.
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Numerical results heat eqn
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Figure 6: Heat eqn. in n = 1 spatial dimension and right-hand side g = 1.
Centers of the supports of the wavelets selected by the awgm. Left u0 = 0
and #uε = 13420. Right u0 = 1 and #uε = 13917. A zoom in near t = 0
is given at the bottom row.
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instat. (N)SE
∂u
∂t − ν∆xu +∇x p = g on I × Ω,

divx u = h on I × Ω,
u = 0 on I × ∂Ω,

u(0, ·) = 0 on Ω,∫
Ω
p dx = 0.

(1)

Can be reduced, for h = 0, to parabolic for velocities, but then arising spaces
will be spaces of divergence-free functions. We enforce incompressibility
constraint via Lagrange multiplier. Saddle point form.

Space-time variational form: With
c(u,v) :=

∫
I

∫
Ω

∂u
∂t · v + ν∇xu : ∇xv dxdt,

d(p,v) := −
∫
I

∫
Ω

pdivx v dxdt,

f(v, q) :=

∫
I

∫
Ω

g · v + h q dxdt,

find (u, p) in some suitable space, such that

(S(u, p))(v, q) := c(u,v) + d(p,v) + d(q,u) = f(v, q)

for all (v, q) from another suitable space.
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(N)SE

For δ ∈ {0, T},

H̆s
0,{δ}(I) := [L2(I), H1

0,{δ}(I)]s,

Ĥs(Ω) := [L2(Ω), H2(Ω) ∩H1
0(Ω)]s

2
,

H̄s(Ω) := [(H1(Ω)/IR)′, H1(Ω)/IR)]s+1
2
,

U s
δ := L2(I; Ĥ2s(Ω)n) ∩ H̆s

0,{δ}(I;L2(Ω)n),

Ps
δ :=

(
L2(I; H̄2s−1(Ω)′) ∩ H̆1−s

0,{δ}(I; H̄1(Ω)′)
)′
.

Thm 2 ([SS15]). For Ω ⊂ IRn a bounded Lipschitz domain, and s ∈ (1
4,

3
4),

it holds that
S ∈ Lis(U s

0 ×Ps
T , (U

1−s
T ×P1−s

0 )′).

• For ∂Ω ∈ C2, result also valid for s ∈ [0, 1]. s ∈ {0, 1} avoids fractional
Sob. sp., but U 1

δ involves H2(Ω).

• For s ∈ (1
4,

3
4), all arising spaces can be ‘conveniently’ equipped with

wavelet Riesz bases. awgm applies.

• Generalizes to NSE for n = 2; for n = 3 we need ‘s’ > 3
4 which requires

smooth ∂Ω or convex domains, and C1-wavelets.
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(N)SE

A few ingredients of proof of Thm 2:

• two inf-sup conditions proven using right-inverse div+ of div constructed
in [Bog79].

• maximal regularity of evolution operators used to show bounded
invertibility of the parabolic problem on the divergence-free velocities.

• With (Au)(v) := ν
∫

Ω
∇u : ∇v dx on Ĥ1(div 0; Ω) × Ĥ1(div 0; Ω),

elliptic regularity on Lipschitz domains gives that for ς ∈ [0, 3
4),

Ĥ2ς(div 0; Ω) ' [Ĥ0(div 0; Ω), D(A)]ς.
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Conclusions

• Adaptive wavelet method solves general well-posed operator equations
with the best possible rate in linear complexity.

• Main advantage is that a posteriori estimator, being the residual of
operator equation in wavelet coordinates, is not restricted to elliptic
problems.

• Numerical results for nontrivial problems needed.

• Well-posedness of space-time variational formulations of evolution
problems is not only of interest for wavelet methods.

Thanks for your attention!
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