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Topics

e Adaptive wavelet methods for solving linear and nonlinear operator
equations

e Application to space-time variational formulation of parabolic PDEs

e Application to space-time variational formulation of instat. (N)SE
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Intoduction & motivation
—Au = f onQC IR

. . . . 1
. 0 on 90 or, in variational form: u € Hy({2)

Consider {
S.t.

[ogradu-gradvde = [, fodz (v e Hy(Q)).

For closed subsp. S C H3(f2), solve problem on S (Galerkin), giving best
approximation from S w.r.t. |- |g1(q).

Take S cont. piecewise pols of order p > 2, zero on bdr, w.r.t. a
triangulation of  (finite element space). Then for a quasi-uniform
triangulation, with NV := dim §,

U —us|gio) S N_—\U|HP(Q)

On a polygon with maximal interior angle o (€ [%,27]), u € H*(Q2) for
s<1+7 s=1

Optimal rate pn;l can be retrieved by proper local refinements when
u e BE () for 7 > (5+5)~" ([BDDP02]); &nd, for sufficiently smooth f,
latter holds true ([DD97]).
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Wavelets Introduction & motivation
Adaptive methods aim at constructing iteratively a seq. of quasi-optimal
meshes based on a posteriori information.Instead of adaptive fem, talk is
about adaptive wavelet methods. Now S is spanned by (adaptively chosen)
(nested) subsets of wavelet basis for Hj(€2). Not restricted to elliptic
problems.

e Orthogonal wavelet basis W = {1: X\ € V} for L(0,1) (properly scaled,

Riesz basis for H*(0,1) for s € (—2, 2)):

T

shift & dilation

Figure 1: Haar wavelets 1y with levels |\| = 0,1, .., diamsupp ¢y ~ 2~

e Riesz basis of continuous piecewise — —\4

polynomial wavelets for H*(€2) (H§(€2)) for \\
s € (—s0,2) (also on polytopes in n > 1 3/30

dimensions):



Setting: Well-posed (lin.) op. egs.

Let X', )V be sep. Hilbert spaces (over IR). Let B € Lis(X,)’). Given
fe), weseek u e X s.t.
Bu = f.

Ex.:
= [,gradw - gradv, X =Y := Hj(Q) (Poisson problem),

e (Bw
o (B(wW,p))(?,q) = J,gradw : gradv — [, pdivy — [,qdivi, X =
: 1(Q)™ x Ly(92) /IR for a domain 2 C IR" (stat. Stokes problem),

° (Bw)(v) — ﬁfag f@Q (w(y)— w(x))(v(y) U(x))dxdy O C RB X =) =

Bk
Hz(09)/R (hypersingular boundary integral equation).

e ODE's, parabolic problems, instat. Stokes: X # V.
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Reformulation as well-posed bi-infinite MV eq

Let U = {¢f: X € Vy}, UY = {4¥: A € Vy} Riesz bases for X, ) (we
have wavelet bases in mind). That is, the synthesis operator,

Fr:c— CT\IJX = Z C)ﬂﬂ;}/ c EiS(fg(VX), X),
AEVy

and so its adjoint, the analysis operator,

Frr g g(TY) = g3 )revy € Lis(X, £2(Vx)).

(analogously for Fy).

Bu = f <= F,BFx Fy'u= Ff,

where
B = (BUY)(UY) € Lis(ls(Va), lo(Vy))

(infinite “stiffness” matrix),

f = f(\Ify) € l5(V) (infinite “load” vector).
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Adaptive Wavelet-Galerkin scheme (Bu = f)

([CDDO1]) Let X =Y, ¥ =¥V and B= B’ >0,sothat B=B'" > 0.
Otherwise apply the following to B'Bu =B 'f.

Goal: To generate sequence of approx. to u that, whenever for some s > 0,
|lu|| 45 := supy N?||lu — un|| < oo, converges with this rate s, at linear
cost. (Here uy is a best approx. to u with # suppuy < N.)

Notations: A C V, Ip : lo(A) = £5(V), Ry = I : £o(V) — £o(A),
B, :=R\BI,, us:=B'RAf, ||| :=(B-,)2
(we will identify uy with Tyuy).

awgm: e Solve B up, = Ry, f;
e A1 D A; by bulk chasing on f — Buy ;
e repeat with 2 :=17+ 1
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awgm

Prop 1 ([CDDO01]). Let 6 € (0,1], ACE C V, s.t.
IR=(f — Buy)|| = 0][f — Buy||.

1

Then |[u — uzll| < [L — £(B)760%] *[lu — usll.

Prop 2 ([GHSO07]). If 6 < R(B)_% and Z is the smallest set satisfying
bulk chasing criterium, then #(ZE\A) < N for smallest N s.t.

1
lu —un[| < [1 - k(B)]2[lu—uall.

Corol 1. awgm realizes optimal rate s,

but, in this form, it is not implementable.

Thm 1. awgm with approx. eval. of residual f — Bupy and approx.
solution of Baupy = Raf within suff. small, but fixed rel. tolerance 0,
also converges with optimal rate s,

and, if such approz. residual eval. takes O(|[u—uyl||~/*+#A) operations
(cost condition), then scheme has optimal comput. compl.
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Nonlinear operator equations

([XZ03, Steld]) Theorem 1 generalizes to equations
F(u)=0

for F: X D dom(F) — ), written as

where F := F},F'Fy, assuming that X = ), DF(u) € Lis(X,X’) and
DF(u) = DF(u)" > 0,

or

written as
DF(u)'F(u) =0,

only assuming that DF(u) € Lis(X,)’).
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Cost condition

Approx. res. eval. scheme from [CDDO1] exploits near-sparsity of
f and B, consequences of the vanishing moments, and that of u,,

(lhaallas < [Jalf]as).
Satisfies cost condition, but is quantitatively costly.

A much more efficient scheme is possible when the application of operator
to a wavelet ‘lands’ in Ly. It generalizes to nonlinear operators.

Since construction of wavelets with required smoothness is cumbersome in
more than one dimensions, we advocate to write a well-posed 2nd order
operator equation as a well-posed 1st order least squares system. Always
possible.
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Application: Parabolic problems
QCR", 1=(0,T).

%—Au:f on I x €,
u=0 onlIx oS,
u(0,-) =0 on €.

e —/\ can be read as semi-linear elliptic operator.
e other (inhom) initial or boundary conditions are allowed.

ou u(ta')_u(t_ha')
h

Standard appr.: Approx. G¢(t,-) by, say
elliptic problems for 0 < t;1 <ty < --- <ty =T

, and solve seq. of

{—A’UJ@@', ) — (tz‘ — ti_l)_lu(ti, ) = (ti — ti_l)_l’LL(ti_l, ) + f(tz', ) on {2
u(t;y,-) = 0 on 0f}

e How to distribute optimally ‘grid points’ over space and time?

e Even if you can, approximation not effective for singularities that are local in space and
time.

e Inherently sequential.

e \When the whole time evolution is needed, as with problems of optimal control or in

visualizations, huge amount of storage.
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Space-time variational formulation
= [, [, %v + grad u - grad vdadt = |[; [, fvdzdt = f(v).

Bc [,is(Lg(I; Hy(Q)) N Hy oy (T H‘l(Q)),gg(I;Hg(Q)l’) (e.g. [LMT70]).

U = Vo=
After selecting Riesz U'%, U7 for %, "V, apply awgm to B' (Bu—f) = 0,
where B := (Bxp%)(qﬂ/), f:= f(U”).

(even better first to write it as a well-posed first order system).

e Since % and ¥ are (intersections of) tensor products of Hilbert spaces
of temporal and spatial functions, they can be equipped with tensor
products of temporal and spatial wavelet collections.

e Conseq., for suff. smooth sol, rate of best N-term approximation equals
that for the corresponding stationary problem (cf. sparse grids or
hyperbolic cross approx.).

(Charac. of approx. classes as tensor product of Besov spaces (cf.
[Nit06, HS12]), and corresponding reg. theory known for the elliptic case
seem open.)
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First test on an ODE

{ wD fvu(t) = g(t) (el

(B,)(v) := [, —u(t)® 4 pu(t)o(t)dt, = [ g(t)v(t)dt + ugv(0).
Prop 3. With X := Ly(1) and ), := H} {T}(I), equipped with || - ||y, =
\/1/2H |17 Lo T |- Hl(I), the operator B, € Lis(X,)Y)) and k(B,) < 2.

Num. results for v =1, g=1o0n (0,5), g =2 on (5,1), up =0 or yy = 1:
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ODE

Uniform, non-adaptive refinements, i.e. collect all wavelets (of order 3) up
to some level.

10 F .
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Il f-Bu_|l
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# supp U,

Rate = 1.5
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ODE

Adaptive refinements, i.e. awgm

I f-Bu_|l

10 10 10
#supp U

Rate = 3
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1 wavelet
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Some approximations

0.6
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Some approximations

2 wavelets
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Some approximations
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3 wavelets
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Some approximations

4 wavelets
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Some approximations

5 wavelets (all scaling functions are now in)
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Some approximations

15 wavelets
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ODE

Results for wavelets of order 5:

-25

10

Figure 2: ||Bu. — f||/||f|| vs. #supp u. for ug = 1 (solid lines) and uy = 0
(dashed lines).
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ODE

16 1.1
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Figure 3: For ug = 1 and #u,. = 202, the non-zero coefficients of u..
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Numerical results heat egn

Figure 4: Heat egn. in n = 1 spatial dimension, right-hand side g = 1
and initial condition uyg = 0. ||Bu. — f||/||f|| vs. N = #suppu. for the
awgm (solid), full-grid (dashed) and sparse-grid method (dashed-dotted).

The dotted line is a multiple of N=5(log N)52.
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Numerical results heat egn

1010

Figure 5: Heat egn. in n = 1 spatial dimension, right-hand side ¢ = 1 and
initial condition ug = 1. ||Bu. — f||/||f|| vs. N = #supp u. for the awgm
(solid). The dotted line is a multiple of N~5(log N)5z.
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Numerical results heat eqn
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Figure 6: Heat egn. in n = 1 spatial dimension and right-hand side g = 1.
Centers of the supports of the wavelets selected by the awgm. Left ug =0
and #u, = 13420. Right ug = 1 and #u, = 13917. A zoom in near t =0

is given at the bottom row.
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instat. (N)SE

(U _ ypAyu+Vep=g onlxQ,

o divy,\u=h on I X,
X u=0 on [ x0, (1)
u(0,-) =0 on €,
\ Jopdx = 0.

Can be reduced, for h = 0, to parabolic for velocities, but then arising spaces
will be spaces of divergence-free functions. We enforce incompressibility
constraint via Lagrange multiplier. Saddle point form.

Space-time variational form: With
(
clu,v) := /1/ % v+ vViu : Vyvdxdt,

<d(p,v) = —j/pdivxvdxdt,
Q

f(v.q) = //g-v+hqudt,
1J Q)

\

find (u, p) in some suitable space, such that
(5(w,p))(v,q) := c(u,v) +d(p,v) +d(g, ) = f(v,q)

for all (v, q) from another suitable space.
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For 0 € {0,T},

) = :L2(I)aH5,{5}(I)]s,
H*(Q) := [L2(), H*(Q) N Hy(Q)]5,

) = [(H(Q)/R)', H(Q)/R)]s41
Us = Lo(I; H**(Q)™) N H§ 15,(I; Lo()"),

P = (Lo(I; H*71(Q)) N H] T (L HN(Q) ).

Thm 2 ([SS15]). For Q2 C IR"™ a bounded Lipschitz domain, and s € (5,
it holds that

B
NI
\_/

S € Lis(Us x P35, (Up~° x P7%)).

e For 90 € C?, result also valid for s € [0,1]. s € {0,1} avoids fractional
Sob. sp., but %" involves H?*(Q).

e For s € (i,%), all arising spaces can be ‘conveniently’ equipped with

wavelet Riesz bases. awgm applies.
e Generalizes to NSE for n = 2: for n = 3 we need ‘s’ > % which requires

smooth 9 or convex domains, and Cl-wavelets. 2%



A few ingredients of proof of Thm 2:

e two inf-sup conditions proven using right-inverse div' of div constructed
in [Bog79].

e maximal regularity of evolution operators used to show bounded
invertibility of the parabolic problem on the divergence-free velocities.

e With (Au)(v) := v J,Vu: Vvdx on H'(div0;Q) x H'(div0; ),
elliptic regularity on Lipschitz domains gives that for ¢ € [0,2),
H?(div 0; Q) ~ [HO(div 0; Q), D(A)]..
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Conclusions

Adaptive wavelet method solves general well-posed operator equations
with the best possible rate in linear complexity.

Main advantage is that a posteriori estimator, being the residual of
operator equation in wavelet coordinates, is not restricted to elliptic
problems.

Numerical results for nontrivial problems needed.

Well-posedness of space-time variational formulations of evolution
problems is not only of interest for wavelet methods.

hanks for your attention!
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