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Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let N > 2. Every radial function
f ∈W 1

2 (RN) is almost everywhere equal to a function f̃ , continuous for
x 6= 0, such that

|f̃ (x)| ≤ c |x |1−
N
2 ‖∇f |L2(RN)‖ ,

where c depends only on N.

The Radial Lemma contains three di�erent assertions:

(a) the existence of a representative of f , which is continuous outside the
origin;

(b) the decay of f near in�nity;

(c) the limited unboundedness near the origin.

(d) points (a)-(c) implies compactness of some of Sobolev embeddings of
�radial parts� of inhomogeneous Sobolev spaces.
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Radial lemma - the simple example p = 1

Let f = g(r(x)) ∈ C∞0 (RN) be smooth radial function. Then

∂f

∂xi
(x) = g ′(r)

xi
r
, r = |x | > 0 , i = 1, . . . , d .

Hence
|| |∇f (x)| |L1(RN)|| = cN || g ′ |L1(R, |t|N−1)||.

Next we apply the identity

g(r) = −
∫ ∞
r

g ′(t)dt

and obtain

|g(r)| ≤
∫ ∞
r
|g ′(t)|dt ≤ r−(N−1)

∫ ∞
r

tN−1|g ′(t)|dt.

This extends to the closure of radial C∞0 (Rd) in the gradient norm:

|x |N−1 |f (x)| = rN−1 |g(r)| ≤ cN

∫
|x |>r

|∇f (x)| dx ≤ cN ‖∇f (x) ‖1 .
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Strauss Lemma -radial case

Theorem (W.Sickel, L.S. 2012)

Let N ≥ 2, 1 ≤ p <∞ and 1 < sp < N .

(i) Then there exists a constant c > 0 s.t.

|f (x)| ≤ c |x |s−
N
p ‖ f |Ḃs

p,∞(RN)‖

holds for all radial f ∈ Ḃs
p,∞(RN), for all x 6= 0.

(ii) There exist a positive constant c > 0 and a function f ∈ RḂs
p,∞(RN),

s.t.

|f (x)| ≥ c |x |s−
N
p ‖ f |Ḃs

p,∞(RN)‖

holds for all x 6= 0.
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Strauss Lemma -radial case - Sobolev spaces

Theorem (W.Sickel, L.S. 2012)

Then the following assertions are equivalent.

(i) There exists a constant c such that

|g(x)| ≤ c |x |s−
N
p ‖ g |Ḣs

p(RN)‖ (1)

holds for all radial g ∈ Ḣs
p(RN) and all x 6= 0.

(ii) We have 1 < sp < N.

Remark For p = 2 cf. Y.Cho, T.Ozawa (2009).
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More general symmetries

Radial means invariant with respect to action of the group SO(RN).

We can take more generally a group G ⊂ SO(RN).

The simplest example - block-radial symmetry

G = SO(γ) = SO(Rγ1)× . . .× SO(Rγm),

γ = (γ1, . . . , γm), N = |γ| = γ1 + . . .+ γm

g(x) = (g1(x1), . . . , gm(xm)), g = (g1, . . . , gm) ∈ G ,

x = (x1, . . . , xm) ∈ RN = Rγ1 × · · · × Rγm ,

We de�ne the G -invariant functions and G -invariant distributions in
the usual way.

If E denotes a space of distributions on RN then by Eγ we mean the
subspace of SO(γ)-invariant distributions in E and we endow this
subspace with the same norm as the original space.
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More general symmetries II

We will assume that 1 < m < N and 2 ≤ γi , i = 1, . . .m .

We put ri (x) = (x2γ1+...+γi−1+1 + . . .+ x2γ1+...+γi )
1/2, i = 1, . . . ,m,

x = (x1, . . . , xN).
The orbits of G = SO(γ):
G · x = x ⇔ x = 0; dimG · 0 = {0};
if ri (x) 6= 0 for any i then dimG · x = Πm

i=1(γi − 1)
if ri (x) = 0 for some i then dimG · x < Πm

i=1(γi − 1) and it is
contained in the hyperplane ri (x) = 0;
Let J ⊂ {1, . . . ,m}. We put

m = d∅ ≤ dJ :=
∑
i∈J

γi + #{i /∈ J} ≤ d{1,...,m} = N.

We put also for 1 ≤ n ≤ m

Rn(x) =
n∏

i=1

ri (x)γi−1, and rmin(x) = min{ri (x) : 1 ≤ i ≤ m}.
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More general symmetries - Sobolev spaces

The spaces Ḣs,p
γ (RN), s > 0, p > 1 are de�ned as the completion of

C∞0,γ(RN) in the norm

‖u‖s,p = ‖(−∆)su‖p = ‖F−1(|ξ|sFu)‖p,

which generalizes the norm ‖∇u‖p in the case s = 1.

The space Ḣs,p
γ (RN) can be identi�ed as subspace of homogeneous

Sobolev space Ḣs,p(RN) de�ned as the completion of C∞0 (RN). The
space Ḣs,p(RN) is a spaces of functions if sp < N.
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Multiradial functions -general remarks

Let f ∈ Ḣs,p
γ (RN), p > 1, m < sp < N. If Rm(x) is bounded away from

zero, then f is locally a Hs,p-function of m variables r1, . . . , rm and is
therefore continuous in such region since m < sp.

Assume that r1(x) ≥ · · · ≥ rm(x) and consider a region where Rn(x),
1 ≤ n < m, is bounded away from zero. Let dn :=

∑m
i=n+1 γi + n. In such

region, f can be considered locally as a Hs,p-function of dn variables
x1, . . . , x∑m

i=n+1 γi
, r1, . . . , rn, and therefore f is continuous whenever

Rn(x) 6= 0 if dn < sp.
Since dn is a monotone decreasing function of n, dm = m, and d0 = N,
there exists n∗ ∈ {1, . . . ,m − 1}, which is the smallest n such that
dn ≤ sp, such that f is continuous whenever Rn∗−1(x) 6= 0, but may be
discontinuous at the orbits
Γ = {x : rn∗(x) = · · · = rm(x) = 0, ri (x) = ρi > 0, i = 1, . . . , n∗ − 1}.
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zero, then f is locally a Hs,p-function of m variables r1, . . . , rm and is
therefore continuous in such region since m < sp.
Assume that r1(x) ≥ · · · ≥ rm(x) and consider a region where Rn(x),
1 ≤ n < m, is bounded away from zero. Let dn :=

∑m
i=n+1 γi + n. In such

region, f can be considered locally as a Hs,p-function of dn variables
x1, . . . , x∑m

i=n+1 γi
, r1, . . . , rn, and therefore f is continuous whenever

Rn(x) 6= 0 if dn < sp.

Since dn is a monotone decreasing function of n, dm = m, and d0 = N,
there exists n∗ ∈ {1, . . . ,m − 1}, which is the smallest n such that
dn ≤ sp, such that f is continuous whenever Rn∗−1(x) 6= 0, but may be
discontinuous at the orbits
Γ = {x : rn∗(x) = · · · = rm(x) = 0, ri (x) = ρi > 0, i = 1, . . . , n∗ − 1}.
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Strauss lemma for block-radial functions

Theorem

Let s > 0, m ∈ N, p > 1, m < sp < N and assume that γi ≥ 2,
i = 1, . . . ,m. Assume also that sp 6= dJ for any J ⊂ {1, . . . ,m}.

There

exists C > 0, C = C (γ, s, p) such that for every f ∈ Ḣs,p
γ (RN),

|f (x)| ≤ C
(
|x |s−N/p + Rm(x)−1/prmin(x)s−m/p

)
‖f ‖s,p, (2)

for any x ∈ RN , Rm(x) 6= 0.

The radial case corresponds to m = 1. Then Rm(x) = |x |N−1 and
rmin(x) = |x | so we got the Strauss estimates for radial functions.

If r1(x) = . . . = rm(x). Then rm(x) = |x |√
m

and

Rm(x)−1/prmin(x)s−m/p = c |x |s−N/p. So in that case we have the Strauss
estimate.
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Strauss lemma for block-radial functions II

Corollary

Assume the conditions of Theorem 1. If, additionally, sp ≥ N − γi + 1 for

all i = 1, . . . ,m, then inequality (2) becomes

|f (x)| ≤ C |x |s−N/p‖f ‖s,p . (3)

If, however, sp ≤ m + γi − 1 for all i = 1, . . . ,m, then inequality (2)
becomes

|f (x)| ≤ C Rm(x)−1/prmin(x)s−m/p‖f ‖s,p . (4)
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Strauss inequality - bi-radial case

Corollary

Assume that 2 = m < sp < N and that γi ≥ 2, i = 1, 2. If
sp > max{γ1, γ2}+ 1, then inequality (2) becomes

|f (x)| ≤ C |x |s−N/p‖f ‖s,p . (5)

If sp < min{γ1, γ2}+ 1, then inequality (2) becomes

|f (x)| ≤ C R2(x)−1/prmin(x)s−2/p‖f ‖s,p. (6)

L.Skrzypczak (UAM Pozna«) Block radial functions Prague, 2016 12 / 21



Strauss inequality - limiting case sp = dJ

Theorem

Let s > 0, m ∈ N, p > 1, m < sp < N and assume that γi ≥ 2,
i = 1, . . . ,m.

Let J ( {1, . . . ,m}, J 6= ∅, and dJ = sp. Let

RJ(x) =
∏
i /∈J

ri (x)γi−1 and UJ := {x ∈ RN : min
i /∈J

ri (x) ≥ max
i∈J

ri (x)}.

There exists C > 0, C = C (γ, s, p) such that for every f ∈ Ḣs,p
γ (RN),

and every x ∈ UJ

|f (x)| ≤
(
1 + log

mini /∈J ri (x)

maxi∈J ri (x)

)
RJ(x)−1/p‖f ‖s,p. (7)
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Bi-radial case

Corollary

Let s > 0, m = 2 < sp < N and assume that γi ≥ 2, i = 1, 2. Let
d∗ = min{γ1, γ2}+ 1 and d∗ = max{γ1, γ2}+ 1. Let d∗ < sp < d∗ then
there exist C > 0 such that for any f ∈ Ḣs,p(RN),

|f (x)| ≤

|x |
s−N

p ‖f ‖s,p, if rmin(x) = ri , and γi = min(γ1, γ2),

|x |
d∗−N

p rmin(x)
sp−d∗

p ‖f ‖s,p, if rmin(x) = ri , and γi = max(γ1, γ2).

Let sp = d∗ < d∗ or sp = d∗ > d∗, then

|f (x)| ≤


(
1 +

∣∣∣log r1(x)
r2(x)

∣∣∣) |x |s−N
p ‖f ‖s,p, x ∈ RN : ri (x) ≤ 1√

2
|x |

|x |s−
N
p ‖f ‖s,p, x ∈ RN : ri (x) ≥ 1√

2
|x |,

if γi = d∗ − 1 or γi = d∗ − 1 respectively.
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Bi-radial case

Corollary

Let s > 0, m = 2 < sp < N and assume that γi ≥ 2, i = 1, 2. Let
d∗ = min{γ1, γ2}+ 1 and d∗ = max{γ1, γ2}+ 1.
Let sp = d∗ = d∗. Then

|f (x)| ≤
(
1 +

∣∣∣∣log r1(x)

r2(x)

∣∣∣∣) |x |s−N
p ‖f ‖s,p, x ∈ RN r1(x) · r2(x) > 0
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Strauss inequality - optimality of the estimates

For any x 6= 0 there exists a smooth compactly supported radial
function ψ such that ψ(x) = 1 and

‖ψ‖s,p ∼ |x |
N
p
−s

with constants independent of φ and x .

Let sp 6= dJ for any J ⊂ 1, . . . ,m. For any x such that Rm(x) 6= 0
there exists a smooth compactly supported SO(γ)-invariant function
ψ such that ψ(x) = 1 and

‖ψ‖s,p ∼ Rm(x)1/prmin(x)
m
p
−s

with constants independent of ψ and x .
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Sobolev spaces once more

Ḣ1,p
0,γ (RN) denotes the completion of C∞0,γ(RN \ Y (γ)) in the gradient

norm ‖∇f ‖p, where

Y (γ) =
⋃

k:γk≥2
Yk ⊂ RN .

Yk is a hyperplane of codimension γk de�ned by rk = 0.

If 1 < p < min{γk : γk ≥ 2, k = 1, . . . ,m} and 1 < m < N, then
Ḣ1,p
0,γ (RN) = Ḣ1,p

γ (RN).
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Block radial symmetry- Hardy's inequalities

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N and 1 ≤ p <∞. There exist C > 0, C = C (γ) if

2 ≤ p <∞, such that for all f ∈ C∞0,γ(RN \ Y (γ)),(∫
RN

|f (x)|p

rγ(x)p

)1/p
≤ C

(∫
RN

|∇f (x)|pdx
)1/p

(8)

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N and 1 < p < min{γk : γk ≥ 2}. Then there exists a

positive constant C such that for each f ∈ Ḣ1,p
γ (RN),(∫

RN

|f (x)|p

rγ(x)p
dx
)1/p

≤ C
(∫

RN

|∇u(x)|pdx
)1/p

. (9)

Moreover C = C (γ) if 2 ≤ p <∞. Here rγ(x) = Rm(x)1/(N−m).
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Block radial symmetry - CKN inequalities

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N, 1 ≤ p <∞, p ≤ q <∞, and let q ≤ p∗m := pm
m−p

whenever p < m. Then there exists a constant C > 0, uniform with

respect to p > 2, such that for every f ∈ Ḣ1,p
0,γ (RN),(∫

RN

(
|u(x)|

rγ(x)|γ|(
1
q
− 1

p
)+1

)q

dx

)1/q

≤ C

(∫
RN

|∇u(x)|pdx
)1/p

. (10)

If p 6= m then the constant C > 0 is independent of p.
Moreover if p < min{γk : γk ≥ 2} then the inequality (10) holds for any
f ∈ Ḣ1

p,γ(RN).
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