Some properties on multi-radial functions

Leszek Skrzypczak (join work with C.Tintarev (Uppsala))
Adam Mickiewicz University, Poznań(Poland)
lskrzyp@amu.edu.pl

FSDONA Prague, July 2016

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.
The Radial Lemma contains three different assertions:

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.
The Radial Lemma contains three different assertions:
(a) the existence of a representative of f, which is continuous outside the origin;

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.
The Radial Lemma contains three different assertions:
(a) the existence of a representative of f, which is continuous outside the origin;
(b) the decay of f near infinity;

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.
The Radial Lemma contains three different assertions:
(a) the existence of a representative of f, which is continuous outside the origin;
(b) the decay of f near infinity;
(c) the limited unboundedness near the origin.

Strauss' Radial Lemma

Strauss' Radial Lemma (1977): Let $N>2$. Every radial function $f \in W_{2}^{1}\left(\mathbb{R}^{N}\right)$ is almost everywhere equal to a function \widetilde{f}, continuous for $x \neq 0$, such that

$$
|\widetilde{f}(x)| \leq c|x|^{1-\frac{N}{2}}\left\|\nabla f \mid L_{2}\left(\mathbb{R}^{N}\right)\right\|
$$

where c depends only on N.
The Radial Lemma contains three different assertions:
(a) the existence of a representative of f, which is continuous outside the origin;
(b) the decay of f near infinity;
(c) the limited unboundedness near the origin.
(d) points (a)-(c) implies compactness of some of Sobolev embeddings of "radial parts" of inhomogeneous Sobolev spaces.

Radial lemma - the simple example $p=1$

Let $f=g(r(x)) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be smooth radial function. Then

$$
\frac{\partial f}{\partial x_{i}}(x)=g^{\prime}(r) \frac{x_{i}}{r}, \quad r=|x|>0, \quad i=1, \ldots, d
$$

Radial lemma - the simple example $p=1$

Let $f=g(r(x)) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be smooth radial function. Then

$$
\frac{\partial f}{\partial x_{i}}(x)=g^{\prime}(r) \frac{x_{i}}{r}, \quad r=|x|>0, \quad i=1, \ldots, d
$$

Hence

$$
\left\||\nabla f(x)|\left|L_{1}\left(\mathbb{R}^{N}\right)\left\|=c_{N}\right\| g^{\prime}\right| L_{1}\left(\mathbb{R},|t|^{N-1}\right)\right\|
$$

Radial lemma - the simple example $p=1$

Let $f=g(r(x)) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be smooth radial function. Then

$$
\frac{\partial f}{\partial x_{i}}(x)=g^{\prime}(r) \frac{x_{i}}{r}, \quad r=|x|>0, \quad i=1, \ldots, d
$$

Hence

$$
\left\||\nabla f(x)|\left|L_{1}\left(\mathbb{R}^{N}\right)\left\|=c_{N}\right\| g^{\prime}\right| L_{1}\left(\mathbb{R},|t|^{N-1}\right)\right\|
$$

Next we apply the identity

$$
g(r)=-\int_{r}^{\infty} g^{\prime}(t) d t
$$

Radial lemma - the simple example $p=1$

Let $f=g(r(x)) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be smooth radial function. Then

$$
\frac{\partial f}{\partial x_{i}}(x)=g^{\prime}(r) \frac{x_{i}}{r}, \quad r=|x|>0, \quad i=1, \ldots, d
$$

Hence

$$
\left\||\nabla f(x)|\left|L_{1}\left(\mathbb{R}^{N}\right)\left\|=c_{N}\right\| g^{\prime}\right| L_{1}\left(\mathbb{R},|t|^{N-1}\right)\right\|
$$

Next we apply the identity

$$
g(r)=-\int_{r}^{\infty} g^{\prime}(t) d t
$$

and obtain

$$
|g(r)| \leq \int_{r}^{\infty}\left|g^{\prime}(t)\right| d t \leq r^{-(N-1)} \int_{r}^{\infty} t^{N-1}\left|g^{\prime}(t)\right| d t
$$

Radial lemma - the simple example $p=1$

Let $f=g(r(x)) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be smooth radial function. Then

$$
\frac{\partial f}{\partial x_{i}}(x)=g^{\prime}(r) \frac{x_{i}}{r}, \quad r=|x|>0, \quad i=1, \ldots, d
$$

Hence

$$
\left\||\nabla f(x)|\left|L_{1}\left(\mathbb{R}^{N}\right)\left\|=c_{N}\right\| g^{\prime}\right| L_{1}\left(\mathbb{R},|t|^{N-1}\right)\right\|
$$

Next we apply the identity

$$
g(r)=-\int_{r}^{\infty} g^{\prime}(t) d t
$$

and obtain

$$
|g(r)| \leq \int_{r}^{\infty}\left|g^{\prime}(t)\right| d t \leq r^{-(N-1)} \int_{r}^{\infty} t^{N-1}\left|g^{\prime}(t)\right| d t
$$

This extends to the closure of radial $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ in the gradient norm:

$$
|x|^{N-1}|f(x)|=r^{N-1}|g(r)| \leq c_{N} \int_{|x|>r}|\nabla f(x)| d x \leq c_{N}\|\nabla f(x)\|_{1}
$$

Strauss Lemma -radial case

Theorem (W.Sickel, L.S. 2012)
Let $N \geq 2,1 \leq p<\infty$ and $1<s p<N$.

Strauss Lemma -radial case

Theorem (W.Sickel, L.S. 2012)
Let $N \geq 2,1 \leq p<\infty$ and $1<s p<N$.
(i) Then there exists a constant $c>0$ s.t.

$$
|f(x)| \leq c|x|^{s-\frac{N}{p}}\left\|f \mid \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)\right\|
$$

holds for all radial $f \in \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)$, for all $x \neq 0$.

Strauss Lemma -radial case

Theorem (W.Sickel, L.S. 2012)
Let $N \geq 2,1 \leq p<\infty$ and $1<s p<N$.
(i) Then there exists a constant $c>0$ s.t.

$$
|f(x)| \leq c|x|^{s-\frac{N}{p}}\left\|f \mid \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)\right\|
$$

holds for all radial $f \in \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)$, for all $x \neq 0$.
(ii) There exist a positive constant $c>0$ and a function $f \in R \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)$, s.t.

$$
|f(x)| \geq c|x|^{s-\frac{N}{p}}\left\|f \mid \dot{B}_{p, \infty}^{s}\left(\mathbb{R}^{N}\right)\right\|
$$

holds for all $x \neq 0$.

Strauss Lemma -radial case - Sobolev spaces

Theorem (W.Sickel, L.S. 2012)
Then the following assertions are equivalent.
(i) There exists a constant c such that

$$
\begin{equation*}
|g(x)| \leq c|x|^{s-\frac{N}{p}}\left\|g \mid \dot{H}_{p}^{s}\left(\mathbb{R}^{N}\right)\right\| \tag{1}
\end{equation*}
$$

holds for all radial $g \in \dot{H}_{p}^{s}\left(\mathbb{R}^{N}\right)$ and all $x \neq 0$.
(ii) We have $1<s p<N$.

Strauss Lemma -radial case - Sobolev spaces

Theorem (W.Sickel, L.S. 2012)
Then the following assertions are equivalent.
(i) There exists a constant c such that

$$
\begin{equation*}
|g(x)| \leq c|x|^{s-\frac{N}{p}}\left\|g \mid \dot{H}_{p}^{s}\left(\mathbb{R}^{N}\right)\right\| \tag{1}
\end{equation*}
$$

holds for all radial $g \in \dot{H}_{p}^{s}\left(\mathbb{R}^{N}\right)$ and all $x \neq 0$.
(ii) We have $1<s p<N$.

Remark For $p=2$ cf. Y.Cho, T.Ozawa (2009).

More general symmetries

- Radial means invariant with respect to action of the group $S O\left(\mathbb{R}^{N}\right)$.

More general symmetries

- Radial means invariant with respect to action of the group $S O\left(\mathbb{R}^{N}\right)$.
- We can take more generally a group $G \subset S O\left(\mathbb{R}^{N}\right)$.

More general symmetries

- Radial means invariant with respect to action of the group $S O\left(\mathbb{R}^{N}\right)$.
- We can take more generally a group $G \subset S O\left(\mathbb{R}^{N}\right)$.
- The simplest example - block-radial symmetry

$$
\begin{aligned}
G=S O(\gamma) & =S O\left(\mathbb{R}^{\gamma_{1}}\right) \times \ldots \times S O\left(\mathbb{R}^{\gamma_{m}}\right), \\
\gamma & =\left(\gamma_{1}, \ldots, \gamma_{m}\right), \quad N=|\gamma|=\gamma_{1}+\ldots+\gamma_{m} \\
g(x) & =\left(g_{1}\left(x_{1}\right), \ldots, g_{m}\left(x_{m}\right)\right), \quad g=\left(g_{1}, \ldots, g_{m}\right) \in G, \\
x & =\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{N}=\mathbb{R}^{\gamma_{1}} \times \cdots \times \mathbb{R}^{\gamma_{m}},
\end{aligned}
$$

More general symmetries

- Radial means invariant with respect to action of the group $S O\left(\mathbb{R}^{N}\right)$.
- We can take more generally a group $G \subset S O\left(\mathbb{R}^{N}\right)$.
- The simplest example - block-radial symmetry

$$
\begin{aligned}
G=S O(\gamma) & =S O\left(\mathbb{R}^{\gamma_{1}}\right) \times \ldots \times S O\left(\mathbb{R}^{\gamma_{m}}\right), \\
\gamma & =\left(\gamma_{1}, \ldots, \gamma_{m}\right), \quad N=|\gamma|=\gamma_{1}+\ldots+\gamma_{m} \\
g(x) & =\left(g_{1}\left(x_{1}\right), \ldots, g_{m}\left(x_{m}\right)\right), \quad g=\left(g_{1}, \ldots, g_{m}\right) \in G, \\
x & =\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{N}=\mathbb{R}^{\gamma_{1}} \times \cdots \times \mathbb{R}^{\gamma_{m}},
\end{aligned}
$$

- We define the G-invariant functions and G-invariant distributions in the usual way.

More general symmetries

- Radial means invariant with respect to action of the group $S O\left(\mathbb{R}^{N}\right)$.
- We can take more generally a group $G \subset S O\left(\mathbb{R}^{N}\right)$.
- The simplest example - block-radial symmetry

$$
\begin{aligned}
G=S O(\gamma) & =S O\left(\mathbb{R}^{\gamma_{1}}\right) \times \ldots \times S O\left(\mathbb{R}^{\gamma_{m}}\right), \\
\gamma & =\left(\gamma_{1}, \ldots, \gamma_{m}\right), \quad N=|\gamma|=\gamma_{1}+\ldots+\gamma_{m} \\
g(x) & =\left(g_{1}\left(x_{1}\right), \ldots, g_{m}\left(x_{m}\right)\right), \quad g=\left(g_{1}, \ldots, g_{m}\right) \in G, \\
x & =\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{N}=\mathbb{R}^{\gamma_{1}} \times \cdots \times \mathbb{R}^{\gamma_{m}},
\end{aligned}
$$

- We define the G-invariant functions and G-invariant distributions in the usual way.
- If E denotes a space of distributions on \mathbb{R}^{N} then by E_{γ} we mean the subspace of $S O(\gamma)$-invariant distributions in E and we endow this subspace with the same norm as the original space.

More general symmetries II

- We will assume that $1<m<N$ and $2 \leq \gamma_{i}, i=1, \ldots m$.

More general symmetries II

- We will assume that $1<m<N$ and $2 \leq \gamma_{i}, i=1, \ldots m$.
- We put $r_{i}(x)=\left(x_{\gamma_{1}+\ldots+\gamma_{i-1}+1}^{2}+\ldots+x_{\gamma_{1}+\ldots+\gamma_{i}}^{2}\right)^{1 / 2}, i=1, \ldots, m$, $x=\left(x_{1}, \ldots, x_{N}\right)$.

More general symmetries II

- We will assume that $1<m<N$ and $2 \leq \gamma_{i}, i=1, \ldots m$.
- We put $r_{i}(x)=\left(x_{\gamma_{1}+\ldots+\gamma_{i-1}+1}^{2}+\ldots+x_{\gamma_{1}+\ldots+\gamma_{i}}^{2}\right)^{1 / 2}, i=1, \ldots, m$, $x=\left(x_{1}, \ldots, x_{N}\right)$.
- The orbits of $G=S O(\gamma)$:
$G \cdot x=x \Leftrightarrow x=0 ; \quad \operatorname{dim} G \cdot 0=\{0\} ;$
if $r_{i}(x) \neq 0$ for any i then $\operatorname{dim} G \cdot x=\prod_{i=1}^{m}\left(\gamma_{i}-1\right)$
if $r_{i}(x)=0$ for some i then $\operatorname{dim} G \cdot x<\Pi_{i=1}^{m}\left(\gamma_{i}-1\right)$ and it is contained in the hyperplane $r_{i}(x)=0$;

More general symmetries II

- We will assume that $1<m<N$ and $2 \leq \gamma_{i}, i=1, \ldots m$.
- We put $r_{i}(x)=\left(x_{\gamma_{1}+\ldots+\gamma_{i-1}+1}^{2}+\ldots+x_{\gamma_{1}+\ldots+\gamma_{i}}^{2}\right)^{1 / 2}, i=1, \ldots, m$, $x=\left(x_{1}, \ldots, x_{N}\right)$.
- The orbits of $G=S O(\gamma)$:
$G \cdot x=x \Leftrightarrow x=0 ; \quad \operatorname{dim} G \cdot 0=\{0\} ;$
if $r_{i}(x) \neq 0$ for any i then $\operatorname{dim} G \cdot x=\prod_{i=1}^{m}\left(\gamma_{i}-1\right)$
if $r_{i}(x)=0$ for some i then $\operatorname{dim} G \cdot x<\Pi_{i=1}^{m}\left(\gamma_{i}-1\right)$ and it is contained in the hyperplane $r_{i}(x)=0$;
- Let $J \subset\{1, \ldots, m\}$. We put

$$
m=d_{\emptyset} \leq d_{J}:=\sum_{i \in J} \gamma_{i}+\#\{i \notin J\} \leq d_{\{1, \ldots, m\}}=N
$$

More general symmetries II

- We will assume that $1<m<N$ and $2 \leq \gamma_{i}, i=1, \ldots m$.
- We put $r_{i}(x)=\left(x_{\gamma_{1}+\ldots+\gamma_{i-1}+1}^{2}+\ldots+x_{\gamma_{1}+\ldots+\gamma_{i}}^{2}\right)^{1 / 2}, i=1, \ldots, m$, $x=\left(x_{1}, \ldots, x_{N}\right)$.
- The orbits of $G=S O(\gamma)$:
$G \cdot x=x \Leftrightarrow x=0 ; \quad \operatorname{dim} G \cdot 0=\{0\} ;$
if $r_{i}(x) \neq 0$ for any i then $\operatorname{dim} G \cdot x=\prod_{i=1}^{m}\left(\gamma_{i}-1\right)$
if $r_{i}(x)=0$ for some i then $\operatorname{dim} G \cdot x<\prod_{i=1}^{m}\left(\gamma_{i}-1\right)$ and it is contained in the hyperplane $r_{i}(x)=0$;
- Let $J \subset\{1, \ldots, m\}$. We put

$$
m=d_{\emptyset} \leq d_{J}:=\sum_{i \in J} \gamma_{i}+\#\{i \notin J\} \leq d_{\{1, \ldots, m\}}=N
$$

- We put also for $1 \leq n \leq m$

$$
R_{n}(x)=\prod_{i=1}^{n} r_{i}(x)^{\gamma_{i}-1}, \quad \text { and } \quad r_{\min }(x)=\min \left\{r_{i}(x): 1 \leq i \leq m\right\}
$$

More general symmetries - Sobolev spaces

- The spaces $\dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$, $s>0, p>1$ are defined as the completion of $C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N}\right)$ in the norm

$$
\|u\|_{s, p}=\left\|(-\Delta)^{s} u\right\|_{p}=\left\|F^{-1}\left(|\xi|^{s} F u\right)\right\|_{p}
$$

which generalizes the norm $\|\nabla u\|_{p}$ in the case $s=1$.

More general symmetries - Sobolev spaces

- The spaces $\dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right), s>0, p>1$ are defined as the completion of $C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N}\right)$ in the norm

$$
\|u\|_{s, p}=\left\|(-\Delta)^{s} u\right\|_{p}=\left\|F^{-1}\left(|\xi|^{s} F u\right)\right\|_{p}
$$

which generalizes the norm $\|\nabla u\|_{p}$ in the case $s=1$.

- The space $\dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$ can be identified as subspace of homogeneous Sobolev space $\dot{H}^{s, p}\left(\mathbb{R}^{N}\right)$ defined as the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. The space $\dot{H}^{s, p}\left(\mathbb{R}^{N}\right)$ is a spaces of functions if $s p<N$.

Multiradial functions -general remarks

Let $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right), p>1, m<s p<N$. If $R_{m}(x)$ is bounded away from zero, then f is locally a $H^{s, p}$-function of m variables r_{1}, \ldots, r_{m} and is therefore continuous in such region since $m<s p$.

Multiradial functions -general remarks

Let $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right), p>1, m<s p<N$. If $R_{m}(x)$ is bounded away from zero, then f is locally a $H^{s, p}$-function of m variables r_{1}, \ldots, r_{m} and is therefore continuous in such region since $m<s p$.
Assume that $r_{1}(x) \geq \cdots \geq r_{m}(x)$ and consider a region where $R_{n}(x)$, $1 \leq n<m$, is bounded away from zero. Let $d_{n}:=\sum_{i=n+1}^{m} \gamma_{i}+n$. In such region, f can be considered locally as a $H^{s, p}$-function of d_{n} variables $x_{1}, \ldots, x_{\sum_{i=n+1}^{m} \gamma_{i}}, r_{1}, \ldots, r_{n}$, and therefore f is continuous whenever $R_{n}(x) \neq 0$ if $d_{n}<s p$.

Multiradial functions -general remarks

Let $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right), p>1, m<s p<N$. If $R_{m}(x)$ is bounded away from zero, then f is locally a $H^{s, p}$-function of m variables r_{1}, \ldots, r_{m} and is therefore continuous in such region since $m<s p$.
Assume that $r_{1}(x) \geq \cdots \geq r_{m}(x)$ and consider a region where $R_{n}(x)$, $1 \leq n<m$, is bounded away from zero. Let $d_{n}:=\sum_{i=n+1}^{m} \gamma_{i}+n$. In such region, f can be considered locally as a $H^{s, p}$-function of d_{n} variables $x_{1}, \ldots, x_{\sum_{i=n+1}^{m} \gamma_{i}}, r_{1}, \ldots, r_{n}$, and therefore f is continuous whenever $R_{n}(x) \neq 0$ if $d_{n}<s p$.
Since d_{n} is a monotone decreasing function of $n, d_{m}=m$, and $d_{0}=N$, there exists $n^{*} \in\{1, \ldots, m-1\}$, which is the smallest n such that $d_{n} \leq s p$, such that f is continuous whenever $R_{n^{*}-1}(x) \neq 0$, but may be discontinuous at the orbits

$$
\Gamma=\left\{x: r_{n^{*}}(x)=\cdots=r_{m}(x)=0, r_{i}(x)=\rho_{i}>0, i=1, \ldots, n^{*}-1\right\} .
$$

Strauss lemma for block-radial functions

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$, $i=1, \ldots, m$. Assume also that $s p \neq d_{J}$ for any $J \subset\{1, \ldots, m\}$.

Strauss lemma for block-radial functions

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$,
$i=1, \ldots, m$. Assume also that $s p \neq d_{J}$ for any $J \subset\{1, \ldots, m\}$. There exists $C>0, C=C(\gamma, s, p)$ such that for every $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$,

Strauss lemma for block-radial functions

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$,
$i=1, \ldots, m$. Assume also that $s p \neq d_{J}$ for any $J \subset\{1, \ldots, m\}$. There exists $C>0, C=C(\gamma, s, p)$ such that for every $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
|f(x)| \leq C\left(|x|^{s-N / p}+R_{m}(x)^{-1 / p} r_{\min }(x)^{s-m / p}\right)\|f\|_{s, p}, \tag{2}
\end{equation*}
$$

for any $x \in \mathbb{R}^{N}, R_{m}(x) \neq 0$.

Strauss lemma for block-radial functions

Theorem

Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$,
$i=1, \ldots, m$. Assume also that $s p \neq d_{\jmath}$ for any $J \subset\{1, \ldots, m\}$. There exists $C>0, C=C(\gamma, s, p)$ such that for every $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
|f(x)| \leq C\left(|x|^{s-N / p}+R_{m}(x)^{-1 / p} r_{\min }(x)^{s-m / p}\right)\|f\|_{s, p}, \tag{2}
\end{equation*}
$$

for any $x \in \mathbb{R}^{N}, R_{m}(x) \neq 0$.
The radial case corresponds to $m=1$. Then $R_{m}(x)=|x|^{N-1}$ and $r_{\min }(x)=|x|$ so we got the Strauss estimates for radial functions.

Strauss lemma for block-radial functions

Theorem

Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$,
$i=1, \ldots, m$. Assume also that $s p \neq d_{J}$ for any $J \subset\{1, \ldots, m\}$. There exists $C>0, C=C(\gamma, s, p)$ such that for every $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
|f(x)| \leq C\left(|x|^{s-N / p}+R_{m}(x)^{-1 / p} r_{\min }(x)^{s-m / p}\right)\|f\|_{s, p}, \tag{2}
\end{equation*}
$$

for any $x \in \mathbb{R}^{N}, R_{m}(x) \neq 0$.
The radial case corresponds to $m=1$. Then $R_{m}(x)=|x|^{N-1}$ and $r_{\min }(x)=|x|$ so we got the Strauss estimates for radial functions. If $r_{1}(x)=\ldots=r_{m}(x)$. Then $r_{m}(x)=\frac{|x|}{\sqrt{m}}$ and $R_{m}(x)^{-1 / p} r_{\text {min }}(x)^{s-m / p}=c|x|^{s-N / p}$. So in that case we have the Strauss estimate.

Strauss lemma for block-radial functions II

Corollary
Assume the conditions of Theorem 1. If, additionally, $s p \geq N-\gamma_{i}+1$ for all $i=1, \ldots, m$, then inequality (2) becomes

$$
\begin{equation*}
|f(x)| \leq C|x|^{s-N / p}\|f\|_{s, p} . \tag{3}
\end{equation*}
$$

If, however, $s p \leq m+\gamma_{i}-1$ for all $i=1, \ldots, m$, then inequality (2) becomes

$$
\begin{equation*}
|f(x)| \leq C R_{m}(x)^{-1 / p} r_{\min }(x)^{s-m / p}\|f\|_{s, p} . \tag{4}
\end{equation*}
$$

Strauss inequality - bi-radial case

Corollary
Assume that $2=m<s p<N$ and that $\gamma_{i} \geq 2, i=1$, 2. If $s p>\max \left\{\gamma_{1}, \gamma_{2}\right\}+1$, then inequality (2) becomes

$$
\begin{equation*}
|f(x)| \leq C|x|^{s-N / p}\|f\|_{s, p} \tag{5}
\end{equation*}
$$

If $s p<\min \left\{\gamma_{1}, \gamma_{2}\right\}+1$, then inequality (2) becomes

$$
\begin{equation*}
|f(x)| \leq C R_{2}(x)^{-1 / p} r_{\min }(x)^{s-2 / p}\|f\|_{s, p} \tag{6}
\end{equation*}
$$

Strauss inequality - limiting case $s p=d_{\jmath}$

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$, $i=1, \ldots, m$.

Strauss inequality - limiting case $s p=d_{\jmath}$

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$, $i=1, \ldots, m$. Let $J \subsetneq\{1, \ldots, m\}, J \neq \emptyset$, and $d_{J}=s p$.

Strauss inequality - limiting case $s p=d_{\jmath}$

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$, $i=1, \ldots, m$. Let $J \subsetneq\{1, \ldots, m\}, J \neq \emptyset$, and $d_{J}=s p$. Let

$$
R_{J}(x)=\prod_{i \notin J} r_{i}(x)^{\gamma_{i}-1} \quad \text { and } \quad U_{J}:=\left\{x \in \mathbb{R}^{N}: \min _{i \notin J} r_{i}(x) \geq \max _{i \in J} r_{i}(x)\right\}
$$

Strauss inequality - limiting case $s p=d_{\jmath}$

Theorem
Let $s>0, m \in \mathbb{N}, p>1, m<s p<N$ and assume that $\gamma_{i} \geq 2$, $i=1, \ldots, m$. Let $J \subsetneq\{1, \ldots, m\}, J \neq \emptyset$, and $d_{J}=s p$. Let

$$
R_{J}(x)=\prod_{i \notin J} r_{i}(x)^{\gamma_{i}-1} \quad \text { and } \quad U_{J}:=\left\{x \in \mathbb{R}^{N}: \min _{i \notin J} r_{i}(x) \geq \max _{i \in J} r_{i}(x)\right\}
$$

There exists $C>0, C=C(\gamma, s, p)$ such that for every $f \in \dot{H}_{\gamma}^{s, p}\left(\mathbb{R}^{N}\right)$, and every $x \in U_{J}$

$$
\begin{equation*}
|f(x)| \leq\left(1+\log \frac{\min _{i \neq J} r_{i}(x)}{\max _{i \in J} r_{i}(x)}\right) R_{J}(x)^{-1 / p}\|f\|_{s, p} \tag{7}
\end{equation*}
$$

Bi-radial case

Corollary

Let $s>0, m=2<s p<N$ and assume that $\gamma_{i} \geq 2, i=1$, 2. Let $d_{*}=\min \left\{\gamma_{1}, \gamma_{2}\right\}+1$ and $d^{*}=\max \left\{\gamma_{1}, \gamma_{2}\right\}+1$. Let $d_{*}<s p<d^{*}$ then there exist $C>0$ such that for any $f \in \dot{H}^{s, p}\left(\mathbb{R}^{N}\right)$,
$|f(x)| \leq \begin{cases}|x|^{s-\frac{N}{p}}\|f\|_{s, p}, & \text { if } r_{\min }(x)=r_{i}, \text { and } \gamma_{i}=\min \left(\gamma_{1}, \gamma_{2}\right), \\ |x|^{\frac{d^{*}-N}{p}} r_{\min }(x)^{\frac{s p-d^{*}}{\rho}}\|f\|_{s, p}, & \text { if } r_{\min }(x)=r_{i}, \text { and } \gamma_{i}=\max \left(\gamma_{1}, \gamma_{2}\right) .\end{cases}$
Let $s p=d_{*}<d^{*}$ or $s p=d^{*}>d_{*}$, then

$$
|f(x)| \leq \begin{cases}\left(1+\left|\log \frac{r_{1}(x)}{r_{2}(x)}\right|\right)|x|^{s-\frac{N}{p}}\|f\|_{s, p}, & x \in \mathbb{R}^{N}: r_{i}(x) \leq \frac{1}{\sqrt{2}}|x| \\ |x|^{s-\frac{N}{p}}\|f\|_{s, p}, & x \in \mathbb{R}^{N}: r_{i}(x) \geq \frac{1}{\sqrt{2}}|x|,\end{cases}
$$

if $\gamma_{i}=d_{*}-1$ or $\gamma_{i}=d^{*}-1$ respectively.

Bi-radial case

Corollary
Let $s>0, m=2<s p<N$ and assume that $\gamma_{i} \geq 2, i=1$, 2. Let $d_{*}=\min \left\{\gamma_{1}, \gamma_{2}\right\}+1$ and $d^{*}=\max \left\{\gamma_{1}, \gamma_{2}\right\}+1$.
Let $s p=d^{*}=d_{*}$. Then

$$
|f(x)| \leq\left(1+\left|\log \frac{r_{1}(x)}{r_{2}(x)}\right|\right)|x|^{s-\frac{N}{p}}\|f\|_{s, p}, \quad x \in \mathbb{R}^{N} r_{1}(x) \cdot r_{2}(x)>0
$$

Strauss inequality - optimality of the estimates

- For any $x \neq 0$ there exists a smooth compactly supported radial function ψ such that $\psi(x)=1$ and

$$
\|\psi\|_{s, p} \sim|x|^{\frac{N}{p}-s}
$$

with constants independent of ϕ and x.

- Let $s p \neq d_{J}$ for any $J \subset 1, \ldots, m$. For any x such that $R_{m}(x) \neq 0$ there exists a smooth compactly supported $S O(\gamma)$-invariant function ψ such that $\psi(x)=1$ and

$$
\|\psi\|_{s, p} \sim R_{m}(x)^{1 / p} r_{\min }(x)^{\frac{m}{p}-s}
$$

with constants independent of ψ and x.

Sobolev spaces once more

- $\dot{H}_{0, \gamma}^{1, p}\left(\mathbb{R}^{N}\right)$ denotes the completion of $C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N} \backslash Y(\gamma)\right)$ in the gradient norm $\|\nabla f\|_{p}$, where

$$
Y(\gamma)=\bigcup_{k: \gamma_{k} \geq 2} Y_{k} \subset \mathbb{R}^{N}
$$

Y_{k} is a hyperplane of codimension γ_{k} defined by $r_{k}=0$.

Sobolev spaces once more

- $\dot{H}_{0, \gamma}^{1, p}\left(\mathbb{R}^{N}\right)$ denotes the completion of $C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N} \backslash Y(\gamma)\right)$ in the gradient norm $\|\nabla f\|_{p}$, where

$$
Y(\gamma)=\bigcup_{k: \gamma_{k} \geq 2} Y_{k} \subset \mathbb{R}^{N}
$$

Y_{k} is a hyperplane of codimension γ_{k} defined by $r_{k}=0$.

- If $1<p<\min \left\{\gamma_{k}: \gamma_{k} \geq 2, k=1, \ldots, m\right\}$ and $1<m<N$, then $\dot{H}_{0, \gamma}^{1, p}\left(\mathbb{R}^{N}\right)=\dot{H}_{\gamma}^{1, p}\left(\mathbb{R}^{N}\right)$.

Block radial symmetry-Hardy's inequalities

Theorem (L.S., C.Tintarev (2016))
Let $1<m<N$ and $1 \leq p<\infty$. There exist $C>0, C=C(\gamma)$ if $2 \leq p<\infty$, such that for all $f \in C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N} \backslash Y(\gamma)\right)$,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}} \frac{|f(x)|^{p}}{r_{\gamma}(x)^{p}}\right)^{1 / p} \leq C\left(\int_{\mathbb{R}^{N}}|\nabla f(x)|^{p} d x\right)^{1 / p} \tag{8}
\end{equation*}
$$

Block radial symmetry-Hardy's inequalities

Theorem (L.S., C.Tintarev (2016))
Let $1<m<N$ and $1 \leq p<\infty$. There exist $C>0, C=C(\gamma)$ if $2 \leq p<\infty$, such that for all $f \in C_{0, \gamma}^{\infty}\left(\mathbb{R}^{N} \backslash Y(\gamma)\right)$,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}} \frac{|f(x)|^{p}}{r_{\gamma}(x)^{p}}\right)^{1 / p} \leq C\left(\int_{\mathbb{R}^{N}}|\nabla f(x)|^{p} d x\right)^{1 / p} \tag{8}
\end{equation*}
$$

Theorem (L.S., C.Tintarev (2016))
Let $1<m<N$ and $1<p<\min \left\{\gamma_{k}: \gamma_{k} \geq 2\right\}$. Then there exists a positive constant C such that for each $f \in \dot{H}_{\gamma}^{1, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}} \frac{|f(x)|^{p}}{r_{\gamma}(x)^{p}} d x\right)^{1 / p} \leq C\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{p} d x\right)^{1 / p} \tag{9}
\end{equation*}
$$

Moreover $C=C(\gamma)$ if $2 \leq p<\infty$. Here $r_{\gamma}(x)=R_{m}(x)^{1 /(N-m)}$.

Block radial symmetry - CKN inequalities

Theorem (L.S., C.Tintarev (2016))
Let $1<m<N, 1 \leq p<\infty, p \leq q<\infty$, and let $q \leq p_{m}^{*}:=\frac{p m}{m-p}$ whenever $p<m$. Then there exists a constant $C>0$, uniform with respect to $p>2$, such that for every $f \in \dot{H}_{0, \gamma}^{1, p}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}\left(\frac{|u(x)|}{r_{\gamma}(x)^{|\gamma|\left(\frac{1}{q}-\frac{1}{p}\right)+1}}\right)^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{p} d x\right)^{1 / p} \tag{10}
\end{equation*}
$$

If $p \neq m$ then the constant $C>0$ is independent of p.
Moreover if $p<\min \left\{\gamma_{k}: \gamma_{k} \geq 2\right\}$ then the inequality (10) holds for any $f \in \dot{H}_{p, \gamma}^{1}\left(\mathbb{R}^{N}\right)$.

References

L. A. Caffarelli, R. Kohn, L. Nirenberg,

First order interpolation inequalities with weights, Composito Math. 53 (1984), 259-275.
Y. Cho, T. Ozawa,

Sobolev inequalities with symmetry, Comm. Contemp. Math. 11 (2009), 355-365.

嗇 I. Kuzin, S. Pohozaev,
Entire solutions of semilinear elliptic equations. Birkhäuser, Basel 1997.
围 W. Sickel, L. Skrzypczak,
On the interplay of regularity and Decay in case of radial functions II. Homogeneous spaces J. Fourier Anal. Appl. 18 (2012), 548-582.

References

囯 L. Skrzypczak,
Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay properties Revista Mat. Iberoamer. 18 (2002), 267-299.
(ivi L. Skrzypczak, C. Tintarev,
On Caffarelli-Kohn-Nirenberg inequalities for Block-radial functions Potential Analysis (DOI 10.1007/s11118-016-9535-4).
圊 L. Skrzypczak, C. Tintarev,
Pointwise estimates for multiradial functions (manuscript).
W.A. Strauss,

Existence of solitary waves in higher dimensions. Comm. in Math. Physics 55 (1977), 149-162.

