Some properties on multi-radial functions

Leszek Skrzypczak (join work with C.Tintarev (Uppsala))

Adam Mickiewicz University, Poznań(Poland) 1 skrzyp@amu.edu.pl

FSDONA Prague, July 2016

$$|\widetilde{f}(x)| \leq c |x|^{1-\frac{N}{2}} \| \nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

L.Skrzypczak (UAM Poznań)

イロト イポト イヨト イヨト 二日

$$|\widetilde{f}(x)| \leq c |x|^{1-\frac{N}{2}} \|\nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

$$|\widetilde{f}(x)| \leq c |x|^{1-\frac{N}{2}} \| \nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

The Radial Lemma contains three different assertions:

(a) the existence of a representative of f, which is continuous outside the origin;

$$|\widetilde{f}(x)| \leq c |x|^{1-rac{N}{2}} \| \nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

- (a) the existence of a representative of f, which is continuous outside the origin;
- (b) the decay of f near infinity;

$$|\widetilde{f}(x)| \leq c |x|^{1-\frac{N}{2}} \| \nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

- (a) the existence of a representative of f, which is continuous outside the origin;
- (b) the decay of f near infinity;
- (c) the limited unboundedness near the origin.

$$|\widetilde{f}(x)| \leq c |x|^{1-rac{N}{2}} \| \nabla f |L_2(\mathbb{R}^N)\|,$$

where c depends only on N.

- (a) the existence of a representative of *f*, which is continuous outside the origin;
- (b) the decay of f near infinity;
- (c) the limited unboundedness near the origin.
- (d) points (a)-(c) implies compactness of some of Sobolev embeddings of "radial parts" of inhomogeneous Sobolev spaces.

Let
$$f = g(r(x)) \in C_0^{\infty}(\mathbb{R}^N)$$
 be smooth radial function. Then
 $\frac{\partial f}{\partial x_i}(x) = g'(r)\frac{x_i}{r}, \quad r = |x| > 0, \qquad i = 1, \dots, d.$

L.Skrzypczak (UAM Poznań)

Block radial functions

Prague, 2016 3 / 21

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Let
$$f = g(r(x)) \in C_0^{\infty}(\mathbb{R}^N)$$
 be smooth radial function. Then
 $\frac{\partial f}{\partial x_i}(x) = g'(r)\frac{x_i}{r}, \quad r = |x| > 0, \qquad i = 1, \dots, d.$

Hence

$$|| |\nabla f(x)| |L_1(\mathbb{R}^N)|| = c_N ||g'|L_1(\mathbb{R}, |t|^{N-1})||.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let
$$f = g(r(x)) \in C_0^{\infty}(\mathbb{R}^N)$$
 be smooth radial function. Then
 $\frac{\partial f}{\partial x_i}(x) = g'(r)\frac{x_i}{r}, \quad r = |x| > 0, \qquad i = 1, \dots, d.$

Hence

$$|| |\nabla f(x)| |L_1(\mathbb{R}^N)|| = c_N ||g'|L_1(\mathbb{R}, |t|^{N-1})||.$$

Next we apply the identity

$$g(r) = -\int_r^\infty g'(t)dt$$

L.Skrzypczak (UAM Poznań)

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Let
$$f = g(r(x)) \in C_0^{\infty}(\mathbb{R}^N)$$
 be smooth radial function. Then
 $\frac{\partial f}{\partial x_i}(x) = g'(r) \frac{x_i}{r}, \quad r = |x| > 0, \qquad i = 1, \dots, d.$

Hence

$$|| |\nabla f(x)| |L_1(\mathbb{R}^N)|| = c_N ||g'|L_1(\mathbb{R}, |t|^{N-1})||.$$

Next we apply the identity

$$g(r)=-\int_r^\infty g'(t)dt$$

and obtain

$$|g(r)| \leq \int_r^\infty |g'(t)| dt \leq r^{-(N-1)} \int_r^\infty t^{N-1} |g'(t)| dt.$$

L.Skrzypczak (UAM Poznań)

イロト 不得 とくき とくき とうき

Let
$$f = g(r(x)) \in C_0^{\infty}(\mathbb{R}^N)$$
 be smooth radial function. Then
 $\frac{\partial f}{\partial x_i}(x) = g'(r)\frac{x_i}{r}, \quad r = |x| > 0, \qquad i = 1, \dots, d.$

Hence

$$|| |\nabla f(x)| |L_1(\mathbb{R}^N)|| = c_N ||g'|L_1(\mathbb{R}, |t|^{N-1})||.$$

Next we apply the identity

$$g(r)=-\int_r^\infty g'(t)dt$$

and obtain

$$|g(r)| \leq \int_{r}^{\infty} |g'(t)| dt \leq r^{-(N-1)} \int_{r}^{\infty} t^{N-1} |g'(t)| dt.$$

This extends to the closure of radial $C_0^{\infty}(\mathbb{R}^d)$ in the gradient norm:

$$|x|^{N-1} |f(x)| = r^{N-1} |g(r)| \le c_N \int_{|x|>r} |\nabla f(x)| \, dx \le c_N \|\nabla f(x)\|_1.$$

L.Skrzypczak (UAM Poznań)

Theorem (W.Sickel, L.S. 2012) Let $N \ge 2$, $1 \le p < \infty$ and 1 < sp < N.

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

Let $N \ge 2$, $1 \le p < \infty$ and 1 < sp < N. (i) Then there exists a constant c > 0 s.t.

$$|f(x)| \leq c |x|^{s-rac{N}{p}} \| f |\dot{B}^s_{p,\infty}(\mathbb{R}^N)\|$$

holds for all radial $f \in \dot{B}^{s}_{p,\infty}(\mathbb{R}^{N})$, for all $x \neq 0$.

< □ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $N \ge 2$, $1 \le p < \infty$ and 1 < sp < N. (i) Then there exists a constant c > 0 s.t.

$$|f(x)| \le c |x|^{s-\frac{N}{p}} \| f | \dot{B}^{s}_{p,\infty}(\mathbb{R}^{N}) \|$$

holds for all radial $f \in \dot{B}^{s}_{p,\infty}(\mathbb{R}^{N})$, for all $x \neq 0$. (ii) There exist a positive constant c > 0 and a function $f \in R\dot{B}^{s}_{p,\infty}(\mathbb{R}^{N})$, s.t.

$$|f(x)| \ge c |x|^{s-\frac{N}{p}} \| f | \dot{B}_{p,\infty}^{s}(\mathbb{R}^{N}) \|$$

holds for all $x \neq 0$.

Then the following assertions are equivalent. (i) There exists a constant c such that

$$|g(x)| \leq c |x|^{s-\frac{N}{p}} \|g\|\dot{H}_{p}^{s}(\mathbb{R}^{N})\|$$

holds for all radial $g \in \dot{H}^{s}_{p}(\mathbb{R}^{N})$ and all $x \neq 0$. (ii) We have 1 < sp < N. (1)

Then the following assertions are equivalent. (i) There exists a constant c such that

$$|g(x)| \leq c |x|^{s-\frac{N}{p}} \|g\|\dot{H}_{p}^{s}(\mathbb{R}^{N})\|$$

holds for all radial $g \in \dot{H}^{s}_{p}(\mathbb{R}^{N})$ and all $x \neq 0$. (ii) We have 1 < sp < N.

Remark For p = 2 cf. Y.Cho, T.Ozawa (2009).

L.Skrzypczak (UAM Poznań)

(1)

• Radial means invariant with respect to action of the group $SO(\mathbb{R}^N)$.

イロト 不得 とくき とくき とうき

- Radial means invariant with respect to action of the group $SO(\mathbb{R}^N)$.
- We can take more generally a group $G \subset SO(\mathbb{R}^N)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Radial means invariant with respect to action of the group $SO(\mathbb{R}^N)$.
- We can take more generally a group $G \subset SO(\mathbb{R}^N)$.
- The simplest example block-radial symmetry

$$G = SO(\gamma) = SO(\mathbb{R}^{\gamma_1}) \times \ldots \times SO(\mathbb{R}^{\gamma_m}),$$

$$\gamma = (\gamma_1, \ldots, \gamma_m), \qquad N = |\gamma| = \gamma_1 + \ldots + \gamma_m$$

$$g(x) = (g_1(x_1), \ldots, g_m(x_m)), \qquad g = (g_1, \ldots, g_m) \in G,$$

$$x = (x_1, \ldots, x_m) \in \mathbb{R}^N = \mathbb{R}^{\gamma_1} \times \cdots \times \mathbb{R}^{\gamma_m},$$

< □ > < □ > < □ > < □ > < □ > < □ >

- Radial means invariant with respect to action of the group $SO(\mathbb{R}^N)$.
- We can take more generally a group $G \subset SO(\mathbb{R}^N)$.
- The simplest example block-radial symmetry

$$G = SO(\gamma) = SO(\mathbb{R}^{\gamma_1}) \times \ldots \times SO(\mathbb{R}^{\gamma_m}),$$

$$\gamma = (\gamma_1, \ldots, \gamma_m), \qquad N = |\gamma| = \gamma_1 + \ldots + \gamma_m$$

$$g(x) = (g_1(x_1), \ldots, g_m(x_m)), \qquad g = (g_1, \ldots, g_m) \in G,$$

$$x = (x_1, \ldots, x_m) \in \mathbb{R}^N = \mathbb{R}^{\gamma_1} \times \cdots \times \mathbb{R}^{\gamma_m},$$

• We define the *G*-invariant functions and *G*-invariant distributions in the usual way.

- Radial means invariant with respect to action of the group $SO(\mathbb{R}^N)$.
- We can take more generally a group $G \subset SO(\mathbb{R}^N)$.
- The simplest example block-radial symmetry

$$G = SO(\gamma) = SO(\mathbb{R}^{\gamma_1}) \times \ldots \times SO(\mathbb{R}^{\gamma_m}),$$

$$\gamma = (\gamma_1, \ldots, \gamma_m), \qquad N = |\gamma| = \gamma_1 + \ldots + \gamma_m$$

$$g(x) = (g_1(x_1), \ldots, g_m(x_m)), \qquad g = (g_1, \ldots, g_m) \in G,$$

$$x = (x_1, \ldots, x_m) \in \mathbb{R}^N = \mathbb{R}^{\gamma_1} \times \cdots \times \mathbb{R}^{\gamma_m},$$

- We define the *G*-invariant functions and *G*-invariant distributions in the usual way.
- If *E* denotes a space of distributions on \mathbb{R}^N then by E_{γ} we mean the subspace of $SO(\gamma)$ -invariant distributions in *E* and we endow this subspace with the same norm as the original space.

L.Skrzypczak (UAM Poznań)

• We will assume that 1 < m < N and $2 \leq \gamma_i, \; i = 1, \ldots m$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- We will assume that 1 < m < N and $2 \le \gamma_i$, i = 1, ..., m. We put $r_i(x) = (x_{\gamma_1 + ... + \gamma_{i-1} + 1}^2 + ... + x_{\gamma_1 + ... + \gamma_i}^2)^{1/2}$, i = 1, ..., m, $x = (x_1, \ldots, x_N).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ullet We will assume that 1 < m < N and $2 \leq \gamma_i, \; i = 1, \dots m$.
- We put $r_i(x) = (x_{\gamma_1+\ldots+\gamma_{i-1}+1}^2 + \ldots + x_{\gamma_1+\ldots+\gamma_i}^2)^{1/2}$, $i = 1, \ldots, m$, $x = (x_1, \ldots, x_N)$.
- The orbits of $G = SO(\gamma)$:
 - $G \cdot x = x \Leftrightarrow x = 0;$ dim $G \cdot 0 = \{0\};$ if $r_i(x) \neq 0$ for any *i* then dim $G \cdot x = \prod_{i=1}^m (\gamma_i - 1)$ if $r_i(x) = 0$ for some *i* then dim $G \cdot x < \prod_{i=1}^m (\gamma_i - 1)$ and it is contained in the hyperplane $r_i(x) = 0;$

▲□▶ ▲掃▶ ▲臣▶ ▲臣▶ ― 臣 … のへで

- ullet We will assume that 1 < m < N and $2 \leq \gamma_i, \; i = 1, \dots m$.
- We put $r_i(x) = (x_{\gamma_1+\ldots+\gamma_{i-1}+1}^2 + \ldots + x_{\gamma_1+\ldots+\gamma_i}^2)^{1/2}$, $i = 1, \ldots, m$, $x = (x_1, \ldots, x_N)$.
- The orbits of $G = SO(\gamma)$:
 - $G \cdot x = x \Leftrightarrow x = 0;$ dim $G \cdot 0 = \{0\};$ if $r_i(x) \neq 0$ for any *i* then dim $G \cdot x = \prod_{i=1}^m (\gamma_i - 1)$ if $r_i(x) = 0$ for some *i* then dim $G \cdot x < \prod_{i=1}^m (\gamma_i - 1)$ and it is contained in the hyperplane $r_i(x) = 0;$
- Let $J \subset \{1, \ldots, m\}$. We put

$$m=d_{\emptyset}\leq d_J:=\sum_{i\in J}\gamma_i+\#\{i\notin J\}\leq d_{\{1,\ldots,m\}}=N.$$

(日) (周) (日) (日) (日) (0) (0)

- ullet We will assume that 1 < m < N and $2 \leq \gamma_i, \; i = 1, \dots m$.
- We put $r_i(x) = (x_{\gamma_1+\ldots+\gamma_{i-1}+1}^2 + \ldots + x_{\gamma_1+\ldots+\gamma_i}^2)^{1/2}$, $i = 1, \ldots, m$, $x = (x_1, \ldots, x_N)$.
- The orbits of $G = SO(\gamma)$:
 - $G \cdot x = x \Leftrightarrow x = 0;$ dim $G \cdot 0 = \{0\};$ if $r_i(x) \neq 0$ for any *i* then dim $G \cdot x = \prod_{i=1}^m (\gamma_i - 1)$ if $r_i(x) = 0$ for some *i* then dim $G \cdot x < \prod_{i=1}^m (\gamma_i - 1)$ and it is contained in the hyperplane $r_i(x) = 0;$

• Let $J \subset \{1, \ldots, m\}$. We put

$$m = d_{\emptyset} \leq d_J := \sum_{i \in J} \gamma_i + \#\{i \notin J\} \leq d_{\{1,\ldots,m\}} = N.$$

• We put also for $1 \le n \le m$

$$R_n(x) = \prod_{i=1}^n r_i(x)^{\gamma_i-1}$$
, and $r_{min}(x) = \min\{r_i(x) : 1 \le i \le m\}$.

L.Skrzypczak (UAM Poznań)

Prague, 2016 7 / 21

More general symmetries - Sobolev spaces

• The spaces $\dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$, s > 0, p > 1 are defined as the completion of $C^{\infty}_{0,\gamma}(\mathbb{R}^N)$ in the norm

$$||u||_{s,p} = ||(-\Delta)^{s}u||_{p} = ||F^{-1}(|\xi|^{s}Fu)||_{p},$$

which generalizes the norm $\|\nabla u\|_p$ in the case s = 1.

イロト イポト イヨト イヨト

More general symmetries - Sobolev spaces

• The spaces $\dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$, s > 0, p > 1 are defined as the completion of $C^{\infty}_{0,\gamma}(\mathbb{R}^N)$ in the norm

$$||u||_{s,p} = ||(-\Delta)^{s}u||_{p} = ||F^{-1}(|\xi|^{s}Fu)||_{p},$$

which generalizes the norm $\|\nabla u\|_p$ in the case s = 1.

• The space $\dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$ can be identified as subspace of homogeneous Sobolev space $\dot{H}^{s,p}(\mathbb{R}^N)$ defined as the completion of $C_0^{\infty}(\mathbb{R}^N)$. The space $\dot{H}^{s,p}(\mathbb{R}^N)$ is a spaces of functions if sp < N.

Let $f \in \dot{H}_{\gamma}^{s,p}(\mathbb{R}^N)$, p > 1, m < sp < N. If $R_m(x)$ is bounded away from zero, then f is locally a $H^{s,p}$ -function of m variables r_1, \ldots, r_m and is therefore continuous in such region since m < sp.

イロト 不得下 イヨト イヨト 二日

Let $f \in \dot{H}_{\gamma}^{s,p}(\mathbb{R}^N)$, p > 1, m < sp < N. If $R_m(x)$ is bounded away from zero, then f is locally a $H^{s,p}$ -function of m variables r_1, \ldots, r_m and is therefore continuous in such region since m < sp. Assume that $r_1(x) \ge \cdots \ge r_m(x)$ and consider a region where $R_n(x)$, $1 \le n < m$, is bounded away from zero. Let $d_n := \sum_{i=n+1}^m \gamma_i + n$. In such region, f can be considered locally as a $H^{s,p}$ -function of d_n variables $x_1, \ldots, x_{\sum_{i=n+1}^m \gamma_i}, r_1, \ldots, r_n$, and therefore f is continuous whenever $R_n(x) \ne 0$ if $d_n < sp$.

Let $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$, p > 1, m < sp < N. If $R_m(x)$ is bounded away from zero, then f is locally a $H^{s,p}$ -function of m variables r_1, \ldots, r_m and is therefore continuous in such region since m < sp. Assume that $r_1(x) \ge \cdots \ge r_m(x)$ and consider a region where $R_n(x)$, $1 \le n < m$, is bounded away from zero. Let $d_n := \sum_{i=n+1}^m \gamma_i + n$. In such region, f can be considered locally as a $H^{s,p}$ -function of d_n variables $x_1, \ldots, x_{\sum_{i=n+1}^m \gamma_i}, r_1, \ldots, r_n$, and therefore f is continuous whenever $R_n(x) \neq 0$ if $d_n < sp$. Since d_n is a monotone decreasing function of n, $d_m = m$, and $d_0 = N$, there exists $n^* \in \{1, \ldots, m-1\}$, which is the smallest n such that $d_n \leq sp$, such that f is continuous whenever $R_{n^*-1}(x) \neq 0$, but may be discontinuous at the orbits

$$\Gamma = \{x : r_{n^*}(x) = \cdots = r_m(x) = 0, r_i(x) = \rho_i > 0, i = 1, \dots, n^* - 1\}.$$

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, i = 1, ..., m. Assume also that $sp \neq d_J$ for any $J \subset \{1, ..., m\}$.

э

Image: A matrix and a matrix

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, i = 1, ..., m. Assume also that $sp \neq d_J$ for any $J \subset \{1, ..., m\}$. There exists C > 0, $C = C(\gamma, s, p)$ such that for every $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$,

Image: A matrix of the second seco

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, i = 1, ..., m. Assume also that $sp \neq d_J$ for any $J \subset \{1, ..., m\}$. There exists C > 0, $C = C(\gamma, s, p)$ such that for every $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$,

$$|f(x)| \le C\left(|x|^{s-N/p} + R_m(x)^{-1/p} r_{\min}(x)^{s-m/p}\right) \|f\|_{s,p},$$
(2)

for any $x \in \mathbb{R}^N$, $R_m(x) \neq 0$.

Image: A matrix and a matrix

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, i = 1, ..., m. Assume also that $sp \neq d_J$ for any $J \subset \{1, ..., m\}$. There exists C > 0, $C = C(\gamma, s, p)$ such that for every $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$,

$$|f(x)| \le C\left(|x|^{s-N/p} + R_m(x)^{-1/p} r_{\min}(x)^{s-m/p}\right) \|f\|_{s,p},$$
(2)

for any $x \in \mathbb{R}^N$, $R_m(x) \neq 0$.

The radial case corresponds to m = 1. Then $R_m(x) = |x|^{N-1}$ and $r_{min}(x) = |x|$ so we got the Strauss estimates for radial functions.

L.Skrzypczak (UAM Poznań)

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, i = 1, ..., m. Assume also that $sp \neq d_J$ for any $J \subset \{1, ..., m\}$. There exists C > 0, $C = C(\gamma, s, p)$ such that for every $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$,

$$|f(x)| \le C \left(|x|^{s-N/p} + R_m(x)^{-1/p} r_{\min}(x)^{s-m/p} \right) \|f\|_{s,p},$$
(2)

for any $x \in \mathbb{R}^N$, $R_m(x) \neq 0$.

The radial case corresponds to m = 1. Then $R_m(x) = |x|^{N-1}$ and $r_{min}(x) = |x|$ so we got the Strauss estimates for radial functions. If $r_1(x) = \ldots = r_m(x)$. Then $r_m(x) = \frac{|x|}{\sqrt{m}}$ and $R_m(x)^{-1/p}r_{\min}(x)^{s-m/p} = c|x|^{s-N/p}$. So in that case we have the Strauss estimate.

Corollary

Assume the conditions of Theorem 1. If, additionally, $sp \ge N - \gamma_i + 1$ for all i = 1, ..., m, then inequality (2) becomes

$$|f(x)| \le C|x|^{s-N/p} ||f||_{s,p}.$$
(3)

If, however, $sp \le m + \gamma_i - 1$ for all i = 1, ..., m, then inequality (2) becomes

$$|f(x)| \le C R_m(x)^{-1/p} r_{\min}(x)^{s-m/p} ||f||_{s,p}.$$
(4)

L.Skrzypczak (UAM Poznań)

Strauss inequality - bi-radial case

Corollary

Assume that 2 = m < sp < N and that $\gamma_i \ge 2$, i = 1, 2. If $sp > \max{\gamma_1, \gamma_2} + 1$, then inequality (2) becomes $|f(x)| \le C |x|^{s-N/p} ||f||_{s,p}$. (5) If $sp < \min{\gamma_1, \gamma_2} + 1$, then inequality (2) becomes

$$|f(x)| \leq C R_2(x)^{-1/p} r_{\min}(x)^{s-2/p} ||f||_{s,p}.$$

L.Skrzypczak (UAM Poznań)

(日) (周) (日) (日) (日)

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, $i = 1, \ldots, m$.

L.Skrzypczak (UAM Poznań)

Prague, 2016 13 / 21

3. 3

Theorem

Let s > 0, $m \in \mathbb{N}$, p > 1, m < sp < N and assume that $\gamma_i \ge 2$, $i = 1, \dots, m$. Let $J \subsetneq \{1, \dots, m\}$, $J \neq \emptyset$, and $d_J = sp$.

L.Skrzypczak (UAM Poznań)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let
$$s > 0$$
, $m \in \mathbb{N}$, $p > 1$, $m < sp < N$ and assume that $\gamma_i \ge 2$,
 $i = 1, \dots, m$. Let $J \subsetneq \{1, \dots, m\}$, $J \neq \emptyset$, and $d_J = sp$. Let

$$R_J(x) = \prod_{i \notin J} r_i(x)^{\gamma_i - 1} \quad and \quad U_J := \{ x \in \mathbb{R}^N : \min_{i \notin J} r_i(x) \ge \max_{i \in J} r_i(x) \}.$$

イロト イロト イヨト イヨト

Theorem

Let
$$s > 0$$
, $m \in \mathbb{N}$, $p > 1$, $m < sp < N$ and assume that $\gamma_i \ge 2$,
 $i = 1, \dots, m$. Let $J \subsetneq \{1, \dots, m\}$, $J \neq \emptyset$, and $d_J = sp$. Let

$$R_J(x) = \prod_{i \notin J} r_i(x)^{\gamma_i - 1} \quad and \quad U_J := \{ x \in \mathbb{R}^N : \min_{i \notin J} r_i(x) \ge \max_{i \in J} r_i(x) \}.$$

There exists C > 0, $C = C(\gamma, s, p)$ such that for every $f \in \dot{H}^{s,p}_{\gamma}(\mathbb{R}^N)$, and every $x \in U_J$

$$|f(x)| \le \left(1 + \log \frac{\min_{i \notin J} r_i(x)}{\max_{i \in J} r_i(x)}\right) R_J(x)^{-1/p} ||f||_{s,p}.$$
 (7)

3. 3

Bi-radial case

Corollary

Let s > 0, m = 2 < sp < N and assume that $\gamma_i \ge 2$, i = 1, 2. Let $d_* = \min\{\gamma_1, \gamma_2\} + 1$ and $d^* = \max\{\gamma_1, \gamma_2\} + 1$. Let $d_* < sp < d^*$ then there exist C > 0 such that for any $f \in \dot{H}^{s,p}(\mathbb{R}^N)$,

$$|f(x)| \leq \begin{cases} |x|^{s-\frac{N}{p}} ||f||_{s,p}, & \text{if } r_{\min}(x) = r_i, \text{ and } \gamma_i = \min(\gamma_1, \gamma_2), \\ |x|^{\frac{d^*-N}{p}} r_{\min}(x)^{\frac{sp-d^*}{p}} ||f||_{s,p}, & \text{if } r_{\min}(x) = r_i, \text{ and } \gamma_i = \max(\gamma_1, \gamma_2) \end{cases}$$

Let $\textit{sp} = \textit{d}_* < \textit{d}^*$ or $\textit{sp} = \textit{d}^* > \textit{d}_*$, then

$$|f(x)| \leq \begin{cases} \left(1 + \left|\log \frac{r_1(x)}{r_2(x)}\right|\right) |x|^{s - \frac{N}{p}} \|f\|_{s,p}, & x \in \mathbb{R}^N : \ r_i(x) \leq \frac{1}{\sqrt{2}} |x| \\ |x|^{s - \frac{N}{p}} \|f\|_{s,p}, & x \in \mathbb{R}^N : \ r_i(x) \geq \frac{1}{\sqrt{2}} |x|, \end{cases}$$

if $\gamma_i = d_* - 1$ or $\gamma_i = d^* - 1$ respectively.

Corollary

Let
$$s > 0$$
, $m = 2 < sp < N$ and assume that $\gamma_i \ge 2$, $i = 1, 2$. Let
 $d_* = \min\{\gamma_1, \gamma_2\} + 1$ and $d^* = \max\{\gamma_1, \gamma_2\} + 1$.
Let $sp = d^* = d_*$. Then

$$|f(x)| \le \left(1 + \left|\log \frac{r_1(x)}{r_2(x)}\right|\right) |x|^{s-\frac{N}{p}} ||f||_{s,p}, \quad x \in \mathbb{R}^N \ r_1(x) \cdot r_2(x) > 0$$

L.Skrzypczak (UAM Poznań)

2

イロン 不聞と 不同と 不同と

Strauss inequality - optimality of the estimates

 For any x ≠ 0 there exists a smooth compactly supported radial function ψ such that ψ(x) = 1 and

$$\|\psi\|_{s,p} \sim |x|^{rac{N}{p}-s}$$

with constants independent of ϕ and x.

• Let $sp \neq d_J$ for any $J \subset 1, ..., m$. For any x such that $R_m(x) \neq 0$ there exists a smooth compactly supported $SO(\gamma)$ -invariant function ψ such that $\psi(x) = 1$ and

$$\|\psi\|_{s,p} \sim R_m(x)^{1/p} r_{min}(x)^{\frac{m}{p}-s}$$

with constants independent of ψ and x.

イロト イポト イヨト イヨト 二日

H^{1,p}_{0,γ}(ℝ^N) denotes the completion of C[∞]_{0,γ}(ℝ^N \ Y(γ)) in the gradient norm ||∇f||_p, where

$$Y(\gamma) = \bigcup_{k: \gamma_k \ge 2} Y_k \subset \mathbb{R}^N.$$

 Y_k is a hyperplane of codimension γ_k defined by $r_k = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

H^{1,p}_{0,γ}(ℝ^N) denotes the completion of C[∞]_{0,γ}(ℝ^N \ Y(γ)) in the gradient norm ||∇f||_p, where

$$Y(\gamma) = \bigcup_{k: \gamma_k \ge 2} Y_k \subset \mathbb{R}^N.$$

 Y_k is a hyperplane of codimension γ_k defined by $r_k = 0$.

• If 1 and <math>1 < m < N, then $\dot{H}^{1,p}_{0,\gamma}(\mathbb{R}^N) = \dot{H}^{1,p}_{\gamma}(\mathbb{R}^N)$.

Block radial symmetry- Hardy's inequalities

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N and $1 \le p < \infty$. There exist C > 0, $C = C(\gamma)$ if $2 \le p < \infty$, such that for all $f \in C_{0,\gamma}^{\infty}(\mathbb{R}^N \setminus Y(\gamma))$,

$$\left(\int_{\mathbb{R}^N} \frac{|f(x)|^p}{r_{\gamma}(x)^p}\right)^{1/p} \le C\left(\int_{\mathbb{R}^N} |\nabla f(x)|^p dx\right)^{1/p} \tag{8}$$

イロト イポト イヨト イヨト 二日

Block radial symmetry- Hardy's inequalities

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N and $1 \le p < \infty$. There exist C > 0, $C = C(\gamma)$ if $2 \le p < \infty$, such that for all $f \in C_{0,\gamma}^{\infty}(\mathbb{R}^N \setminus Y(\gamma))$,

$$\left(\int_{\mathbb{R}^N} \frac{|f(x)|^p}{r_{\gamma}(x)^p}\right)^{1/p} \le C \left(\int_{\mathbb{R}^N} |\nabla f(x)|^p dx\right)^{1/p}$$
(8)

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N and $1 . Then there exists a positive constant C such that for each <math>f \in \dot{H}^{1,p}_{\gamma}(\mathbb{R}^N)$,

$$\left(\int_{\mathbb{R}^N} \frac{|f(x)|^p}{r_{\gamma}(x)^p} dx\right)^{1/p} \le C \left(\int_{\mathbb{R}^N} |\nabla u(x)|^p dx\right)^{1/p}.$$
(9)

18 / 21

Moreover $C = C(\gamma)$ if $2 \le p < \infty$. Here $r_{\gamma}(x) = R_m(x)^{1/(N-m)}$. LSkrzypczak (UAM Poznań) Block radial functions Prague, 2016

Theorem (L.S., C.Tintarev (2016))

Let 1 < m < N, $1 \le p < \infty$, $p \le q < \infty$, and let $q \le p_m^* := \frac{pm}{m-p}$ whenever p < m. Then there exists a constant C > 0, uniform with respect to p > 2, such that for every $f \in \dot{H}^{1,p}_{0,\gamma}(\mathbb{R}^N)$,

$$\left(\int_{\mathbb{R}^N} \left(\frac{|u(x)|}{r_{\gamma}(x)^{|\gamma|(\frac{1}{q}-\frac{1}{p})+1}}\right)^q dx\right)^{1/q} \leq C \left(\int_{\mathbb{R}^N} |\nabla u(x)|^p dx\right)^{1/p}.$$
 (10)

If $p \neq m$ then the constant C > 0 is independent of p. Moreover if $p < \min\{\gamma_k : \gamma_k \ge 2\}$ then the inequality (10) holds for any $f \in \dot{H}^1_{p,\gamma}(\mathbb{R}^N)$.

L.Skrzypczak (UAM Poznań)

イロト イポト イヨト イヨト 二日

References

🔋 L. A. Caffarelli, R. Kohn, L. Nirenberg,

First order interpolation inequalities with weights, Composito Math. **53** (1984), 259-275.

🄰 Y. Cho, T. Ozawa,

Sobolev inequalities with symmetry, Comm. Contemp. Math. 11 (2009), 355-365.

🔋 I. Kuzin, S. Pohozaev,

Entire solutions of semilinear elliptic equations. Birkhäuser, Basel 1997.

🔋 W. Sickel, L. Skrzypczak,

On the interplay of regularity and Decay in case of radial functions II. Homogeneous spaces J. Fourier Anal. Appl. **18** (2012), 548-582.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

L. Skrzypczak,

Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay properties Revista Mat. Iberoamer. **18** (2002), 267-299.

L. Skrzypczak, C. Tintarev,

On Caffarelli-Kohn-Nirenberg inequalities for Block-radial functions Potential Analysis (DOI 10.1007/s11118-016-9535-4).

L. Skrzypczak, C. Tintarev,

Pointwise estimates for multiradial functions (manuscript).

W.A. Strauss,

Existence of solitary waves in higher dimensions. Comm. in Math. Physics **55** (1977), 149-162.

イロト イポト イヨト イヨト 二日