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In the present talk we shall consider weak solutions of the
following boundary value problems for elliptic functional
differential equations:

−
n∑

j=1

Dj [aj (x ,u,Du; u)] + a0(x ,u,Du; u) = F (x), x ∈ Ω (1)

γ(u(x); u) = ϕ(x), x ∈ ∂Ω, (2)

where Ω ⊂ Rn is a (possibly unbounded) domain and ; u denotes
nonlocal dependence on u.
By using the theory of monotone type operators my PhD student
M. Csirik proved an existence theorem for 2m order nonlinear
elliptic functional differential equations. After formulating the
existence theorem, we shall investigate the number of solutions in
certain particular cases.
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Denote by Ω ⊂ Rn a (possibly unbounded) domain, 1 < p <∞,
W 1,p(Ω) the Sobolev space with the norm

‖u‖ =

∫
Ω

 n∑
j=1

|Dju|p + |u|p
dx

1/p

.

Further, let V ⊂W 1,p(Ω) be a closed linear subspace of W 1,p(Ω),
V ? the dual space of V , the duality between V ? and V will be
denoted by 〈·, ·〉. Now we formulate the assumptions of the
existence theorem for second order equations.
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(A1). The functions aj : Ω× Rn+1 × V → R (j = 0,1, · · · ,n) satisfy
the Carathéodory conditions for arbitrary fixed u ∈ V .
(A2). There exist bounded (nonlinear) operators g1 : V → R+ and
k1 : V → Lq(Ω) (1/p + 1/q = 1) such that k1 is compact and

|aj (x , η, ζ; u)| ≤ g1(u)[1 + η|p−1 + |ζ|p−1] + [k1(u)](x),

j = 0,1, · · · ,n, for a.e. x ∈ Ω, each (η, ζ) ∈ Rn+1, u ∈ V .
(A3). The inequality

n∑
j=1

[aj (x , η, ζ; u)− [aj (x , η, ζ?; u)](ζj − ζ?j ) ≥ g2(u)|ζ − ζ?|p

holds where g2(u) ≥ c?(1 + ‖u‖V )−σ
?

and the constants c?, σ?

satisfy c? > 0, 0 ≤ σ? < p − 1.
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(A4) The inequality

n∑
j=0

aj (x , η, ζ; u)ξj ≥ g2(u)[1 + |η|p + |ζ|p]− [k2(u)](x)

holds where ξ = (η, ζ), the operator k2 : V → L1(Ω) satisfies

‖k2(u)‖L1(Ω) ≤ const(1 + ‖u‖V )σ, u ∈ V

with some positive σ < p − σ?.
(A5) If (uk )→ u weakly in V, (ηk )→ η in R, (ζk )→ ζ in Rn then for
a subsequence, a.a. x ∈ Ω

lim
k→∞

aj (x , ηk , ζk ; uk ) = aj (x , η, ζ; u), j = 0,1, · · · ,n.
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Theorem
Assume (A1) - (A5). Then the operator A : V → V ? defined by

〈A(u), v〉 =

∫
Ω

 n∑
j=1

aj (x ,u,Du; u)Djv + a0(x ,u,Du; u)v

dx

is bounded, pseudomonotone and coercive. Thus for any F ∈ V ?

there exists u ∈ V satisfying A(u) = F. (M. Csirik, EJQTDE,
2016.)

Main steps of the proof Assumptions (A1), (A2) directly imply
that A is bounded and (A4) implies that A is coercive. The proof of
pseudomonotonicity is not difficult if Ω is bounded (since W 1,p(Ω)
is compactly imbedded in Lp(Ω)). If Ω is unbounded, one can use
arguments of F. E Browder. (Pseudo-monotone operators and
nonlinear elliptic boundary value problems on unbounded
domains, Proc. Nat. Ac. Sci. 74, 2659-2661.)
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When Ω is bounded (with sufficiently smooth boundary):

aj (x , η, ζ; u) = b(x , [H(u)](x)ζj |ζ|p−2, j = 1, · · · ,n,

a0(x , η, ζ; u) = b0(x , [H0(u)](x))η|η|p−2+b̂0(x , [F0(u)](x))α̂0(x , η, ζ)

where b,b0, b̂0, α̂0 are Carathéodory functions satisfying

b(x , θ), b0(x , θ) ≥ c2

1 + |θ|σ?
, (c2 > 0, 0 ≤ σ? < p − 1)

|b̂0(x , θ)| ≤ 1 + |θ|p−1−ρ? , (0 < ρ? < p − 1)

|α̂0(x , η, ζ)| ≤ c1[1 + |η|ρ̂ + |ζ|ρ̂, (0 ≤ ρ̂, σ? + ρ̂ < ρ?;

H,H0 : Lp(Ω)→ C(Ω), F0 : Lp(Ω)→ Lp(Ω)

are linear continuous operators. If b, b0 are between two positive
constants then H,H0 : Lp(Ω)→ Lp(Ω) is admitted (e.g. u with
transformed argument).
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In the case when Ω is unbounded, the above functions aj satisfy
the assumptions of the existence theorem if

H,H0 : Lp(Ω′)→ C(Ω)

are bounded linear operators with some bounded domain Ω′,
further, α̂0 = 1 and b̂0 has the form

b̂0(x ; u) = b1(x)N(u)

where
N : V →W 1,p(Ω) or N : V → R

is a bounded linear operator and

b1 ∈ Ls(Ω) where
p

p − 2 + p/n
< s <

p
p − 2

.
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Now consider particular cases for the functions aj , g:

aj (x , η, ζ; u) = ãj (x , η, ζ,M(u)), γ(u; u) = γ̃(u,M(u))

j = 0,1, · · · ,n, (first boundary condition, for simplicity), where
M : V → R is a bounded, continuous (possibly nonlinear) operator
and

ãj : Ω× Rn+1 × R→ R, γ̃ : ∂Ω× R→ R

satisfy the Carathéodory conditions.
Assume that for every λ ∈ R there exists a unique solution uλ ∈ V
of

Aλ(uλ) = F (F ∈ V ?), γ̃(u, λ) = ϕ on ∂Ω

where Aλ : V → V ? is defined by

〈Aλ(u), v〉 =

∫
Ω

 n∑
j=1

ãj (x ,u,Du, λ)Djv + ã0(x ,u,Du, λ)v

dx
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Define the function g : R→ R by g(λ) = M(uλ). Then a function
u ∈ V is a solution of∫

Ω

 n∑
j=1

ãj (x ,u,Du,M(u))Djv + ã0(x ,u,Du,M(u))v

dx = (3)

〈F , v〉, γ̃(u,M(u)) = ϕ on ∂Ω

if and only if λ = M(u) satisfies λ = g(λ).
Consider the following particular case

ãj (x ,u,Du,M(u)) = bj (x ,u,Du)h(M(u)), i.e.

ãj (x ,u,Du, λ) = bj (x ,u,Du)h(λ),

j = 1, · · · ,n and

ã0(x ,u,Du, λ) = b0(x ,u,Du)h(λ) + β(x)l(λ),



On nonlinear
elliptic

functional
equations

L. Simon

Introduction

Existence of
solutions

Examples

Number of
solutions

References

γ̃(u, λ) = h(λ)u + β1(x)l1(λ)

with some continuous functions h : R→ R+, l , l1 : R→ R and
β ∈ Lq(Ω), β1 ∈ Lp(∂Ω) . Then

Aλ(u) = F , γ̃(u,M(u)) = ϕ on ∂Ω

can be written in the form

B(u) =
F − l(λ)β

h(λ)
, u =

ϕ− l1(λ)β1

h(λ)
on ∂Ω

where B(u) is defined by

〈B(u), v〉 =

∫
Ω

 n∑
j=1

bj (x ,u,Du)Djv + b0(x ,u,Du)v

 ,
u ∈W 1,p(Ω), v ∈ V .



On nonlinear
elliptic

functional
equations

L. Simon

Introduction

Existence of
solutions

Examples

Number of
solutions

References

Assume that B : V → V ? is a uniformly monotone, bounded,
hemicontinuous operator then the unique solution of

Aλ(u) = F , γ̃(u,M(u)) = ϕ on ∂Ω :

u = uλ = B−1
(

F − l(λ)β

h(λ)
,
ϕ− l1(λ)β1

h(λ)

)
where B(u) = (B(u),u |∂Ω) and thus

g(λ) = M(uλ) = M
[
B−1

(
F − l(λ)β

h(λ)
,
ϕ− l1(λ)β1

h(λ)

)]
.

Since B−1 : V ? × Lp(∂Ω)→ V and M : V → R, l , h are
continuous, g : R→ R is a continuous function. Further, we have
shown that the number of solutions of problem (1), (2) equals to
the number of real solutions of the equation g(λ) = λ.
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Now consider two particular cases.
1. Assume that ϕ = 0 and B, M are homogeneous in the sense

B−1(µF ) = µ
1

p−1 B−1(F ) for all µ ≥ 0 (p > 1),

M(µu) = µσM(u) for all µ ≥ 0 (σ ≥ 0)

(M is nonnegative). Then

g(λ) =
M{B−1[F − l(λ)β]}

h(λ)
σ

p−1
.

Consequently, if g is a positive continuous function such that
λ = g(λ) has exactly N roots (N = 0,1, · · · ,∞) then our boundary
value problem (with 0 boundary condition) has exactly N solutions
with

h(λ) =

[
M{B−1[F − l(λ)β]}

g(λ)

] p−1
σ

.
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We have this particular case if e.g. B is defined by the
p-Laplacian, i.e.

bj (x , η, ζ) = |ζ|p−2ζ, j = 1, · · · ,n, b0(x , η, ζ) = c|η|p−2η

η ∈ R, ζ ∈ Rn with some c > 0. (If Ω is bounded then c may be 0,
too.) Further,

M(u) =

∫
Ω

 n∑
j=1

aj (x)|Dju|σ + a0(x)|u|σ
dx

where aj ∈ L∞(Ω), aj > 0, 0 < σ ≤ p.
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2. Assume that B and M are linear Then

g(λ) =
M[B−1(F , ϕ)]− l(λ)M[B−1(β,0)]− l1(λ)M[B−1(0, β1)]

h(λ)
.

Therefore, if g is a positive continuous function such that λ = g(λ)
has N roots (N = 0,1, · · · ,∞) then our boundary value problem
has N solutions with

h(λ) =
M[B−1(F , ϕ)]− l(λ)M[B−1(β,0)]− l1(λ)M[B−1(0, β1)]

g(λ)

and arbitrary continuous functions l , l1. Similarly, if
M[B−1(β,0)] 6= 0 and g is a continuous function such that
λ = g(λ) has N roots then our boundary value problem has N
solutions with

l(λ) =
g(λ)h(λ)−M[B−1(F , ϕ)] + l1(λ)M[B−1(0, β1)]

M[B−1(β,0)]

and arbitrary continuous functions h, l1.
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In this case operator M : W 1,2(Ω)→ R may have the form

Mu =

∫  n∑
j=1

ajDju + a0u

+

∫
∂Ω

b0udσ

where aj ∈ L2(Ω), b0 ∈ L2(∂Ω).
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