Interpolation of uniformly absolutely continuous operators

Bohumír Opic

Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University, Prague

(joint work with F. Cobos, A. Gogatishvili, and L. Pick)

FSDONA, July 5, 2016

Motivation

 $1 \le q < \frac{np}{n-p}$

$$W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$$

 $L^p(\Omega) \hookrightarrow L^p(\Omega)$

 $1 \le q < p$

$$W^{1,p}(\Omega) \hookrightarrow L^{\frac{np}{n-p},p}(\Omega)$$
 $L^p(\Omega) \stackrel{*}{\hookrightarrow} L^q(\Omega)$

sequentially compactness in $BFS_a \Leftrightarrow$

 \Leftrightarrow (sequentially compactness in measure + UAC)

Bohumír Opic (Prague, Czech Republic)

Banach function space

Definition

Let (\mathcal{R}, μ) be a measure space. We denote by $\mathcal{M}(\mathcal{R})$ the set of all measurable functions on \mathcal{R} . A Banach space $X(\mathcal{R}) \subset \mathcal{M}(\mathcal{R})$, equipped with the norm $\|\cdot\|_{X(\mathcal{R})}$, is said to be a Banach function space over the measure space (\mathcal{R}, μ) if the following axioms hold for every $f, g, f_n \in \mathcal{M}(\mathcal{R})$:

$$0 \leq g \leq f\mu\text{-a.e. implies } \|g\|_{X(\mathcal{R})} \leq \|f\|_{X(\mathcal{R})};$$
(P1)

$$0 \leq f_n \nearrow f\mu\text{-a.e. implies } \|f_n\|_{X(\mathcal{R})} \nearrow \|f\|_{X(\mathcal{R})};$$
(P2)

$$\|\chi_E\|_{X(\mathcal{R})} < \infty \text{ for every } E \subset \mathcal{R}, \ \mu(E) < \infty;$$
(P3)
for every $E \subset \mathcal{R}, \text{ with } \mu(E) < \infty, \exists C_E \in (0, \infty) \text{ such that}$ (P4)

$$\int_E f \leq C_E \|f\|_{X(\mathcal{R})} \text{ for every } f \in X(\mathcal{R}).$$

Banach lattice

Definition

If a Banach space $X(\mathcal{R}) \subset \mathcal{M}(\mathcal{R})$ satisfies (P1), then we say that X is a Banach lattice over the measure space (\mathcal{R}, μ) .

Moreover, if a Banach lattice X also satisfies (P2), we say that it has the Fatou property.

4 / 24

Uniformly absolutely continuous set

Definition

A function f in a Banach function space $X(\mathcal{R})$ is said to have absolutely continuous norm in $X(\mathcal{R})$ if $||f\chi_{E_n}||_{X(\mathcal{R})} \to 0$ for every sequence $\{E_n\}$ of subsets of \mathcal{R} such that $\chi_{E_n} \to 0$ μ -a.e.

A set $M \subset X(\mathcal{R})$ is uniformly absolutely continuous in $X(\mathcal{R})$ if

 $\lim_{n\to\infty}\sup_{f\in M}\|f\chi_{E_n}\|_{X(\mathcal{R})}=0 \text{ for every sequence } E_n \text{ such that } \chi_{E_n}\to 0 \ \mu\text{-a.e.}$

Uniformly absolutely continuous operator

Definition

Let A be a Banach space and let B be a Banach function space over a measure space (\mathcal{R}, μ) . Let T be a bounded linear operator defined on A with values in B (notation $T : A \to B$). Then T is said to be uniformly absolutely continuous (notation $T : A \xrightarrow{*} B$) if the image under T of the unit ball in A is uniformly absolutely continuous in B. This means that

$$\lim_{n\to\infty}\sup_{\|f\|_A\leq 1}\|\chi_{E_n}\cdot Tf\|_B=0$$

for every sequence $\{E_n\}$ of subsets of \mathcal{R} such that $\chi_{E_n} \to 0 \ \mu$ -a.e.

The class Φ

Definition

We say that a function $\varphi : [0, \infty) \times [0, \infty) \to [0, \infty)$, $\varphi \not\equiv 0$, belongs to the class Φ if it has the following properties:

(i) $\varphi(0,0)=0$,

(ii) $\varphi(s, t)$ is almost non-decreasing in each variable,

(iii) $\varphi(s,t)$ is positively homogeneous of degree 1, that is,

$$\varphi(\lambda s, \lambda t) = \lambda \varphi(s, t)$$
 for every $\lambda, s, t \in [0, \infty)$.

The cone Q

Definition

A non-negative function h on $[0, \infty)$ is called quasiconcave (notation $h \in Q$) if h(t) = 0 if and only if t = 0, h is non-decreasing on $(0, \infty)$ and $\frac{h(t)}{t}$ is non-increasing on $(0, \infty)$.

Remarks

(i) If $\varphi \in \Phi$, then φ is quasiconcave in each variable. Moreover, $\varphi(s, t) > 0$ if $s \neq 0$ and $t \neq 0$ and the function

$$arphi^*(t):=arphi(1,t) ext{ for all } t\in [0,\infty)$$

is quasiconcave and

$$\varphi(s,t) = s\varphi\left(1,\frac{t}{s}\right) = s\varphi^*\left(\frac{t}{s}\right) \text{ for all } s \in (0,\infty).$$

(ii) On the other hand, if $\varphi^* : [0, \infty) \to [0, \infty)$ is quasiconcave, then $\varphi(s, t) := \begin{cases} s\varphi^*\left(\frac{t}{s}\right) & \text{if } s, t \in (0, \infty), \\ 0 & \text{if } s = 0 \text{ or } t = 0, \end{cases}$ satisfies $\varphi \in \Phi$.

(iii) If $\varphi \in \Phi$, then there exists a constant $C \in (0, \infty)$ such that $\varphi(s, t) \leq C \max\{s, t\}$ for every $s, t \in [0, \infty)$.

Type of interpolation method

Definition

Let $\varphi \in \Phi$, let \mathcal{C} be a category of Banach spaces and let \mathcal{C}_1 be the subcategory of compatible pairs of spaces from \mathcal{C} . An interpolation method \mathcal{F} is said to be of type φ on \mathcal{C}_1 if, for all $s, t \in [0, \infty)$,

$$\begin{split} \sup\{\|T\|_{\mathcal{F}(\bar{A})\to\mathcal{F}(\bar{B})};\\ \|T\|_{A_0\to B_0} \leq s, \ \|T\|_{A_1\to B_1} \leq t, \bar{A}, \bar{B}\in\mathcal{C}_1, \ T\in\mathcal{L}(\bar{A},\bar{B})\} \lesssim \varphi(s,t) \end{split}$$

Inote that $\bar{A} = (A_0, A_1), \ \bar{B} = (B_0, B_1)).$
An interpolation method \mathcal{F} is said to be of sharp type φ on \mathcal{C}_1 if, for all $s, t \in [0, \infty).$

$$\sup\{\|T\|_{\mathcal{F}(\bar{A})\to\mathcal{F}(\bar{B})}; \\ \|T\|_{\mathcal{A}_0\to\mathcal{B}_0} \leq s, \ \|T\|_{\mathcal{A}_1\to\mathcal{B}_1} \leq t, \bar{A}, \bar{B}\in\mathcal{C}_1, \ T\in\mathcal{L}(\bar{A},\bar{B})\} \approx \varphi(s,t).$$

First results

Theorem 1

Let $\varphi \in \Phi$, let C be a category of Banach spaces and let C_1 be the subcategory of compatible pairs of spaces from C. Let $\overline{A} = (A_0, A_1) \in C_1$ and $\overline{B} = (B_0, B_1) \in C_1$. Suppose that B_0 and B_1 are Banach function spaces over the same measure space (\mathcal{R}, μ) . Assume that \mathcal{F} is an interpolation method of type φ on C_1 , where φ satisfies

 $\lim_{s\to 0+} \varphi(s,t) = 0 \qquad \text{for any fixed } t \in (0,\infty).$

If T is a linear operator such that

 $T: A_0 \xrightarrow{*} B_0$

and

$$T: A_1 \rightarrow B_1,$$

then

 $T: \mathcal{F}(\bar{A}) \xrightarrow{*} \mathcal{F}(\bar{B}).$

Theorem 2

Let $\varphi \in \Phi$, let C be a category of Banach spaces and let C_1 be the subcategory of compatible pairs of spaces from C. Let $\overline{A} = (A_0, A_1) \in C_1$ and $\overline{B} = (B_0, B_1) \in C_1$. Suppose that B_0 and B_1 are Banach function spaces over the same measure space (\mathcal{R}, μ) . Assume that \mathcal{F} is an interpolation method of type φ on C_1 , where φ satisfies

 $\lim_{t\to 0+} \varphi(s,t) = 0 \qquad \text{for any fixed } s \in (0,\infty).$

If T is a linear operator such that

 $T: A_0 \rightarrow B_0$

and

$$T: A_1 \stackrel{*}{\rightarrow} B_1,$$

then

 $T: \mathcal{F}(\bar{A}) \xrightarrow{*} \mathcal{F}(\bar{B}).$

Bohumír Opic (Prague, Czech Republic)

Interpolation of UAC operators

FSDONA, July 5, 2016 11 / 24

Besov space $B^{0,\beta}_{p,q}(\mathbb{R}^n)$

Definition

Let $p \in [1, \infty)$ and $q \in [1, \infty]$. Denote $\ell(t) := (1 + |\log t|)$, $t \in (0, 1)$, and let $\beta \in \mathbb{R}$ be such that

$$eta+rac{1}{q}\geq 0 \quad ext{if } q<\infty \quad ext{and} \quad eta\in(0,\infty) \quad ext{if } q=\infty.$$

Let $\omega_1(f, t)_p$ be the value of the first-order modulus of continuity of a function f at t with respect to $L^p(\mathbb{R}^n)$, defined by

$$\omega_1(f,t)_p := \sup_{\substack{|h| \le t}} \|f(x+h) - f(x)\|_{p,\mathbb{R}^n},$$

where $h \in \mathbb{R}^n$ and $t \in ([0,\infty)$.

The Besov space

$$B^{0,\beta}_{\rho,q}(\mathbb{R}^n):=\{f\in L^p(\mathbb{R}^n): \|f\|_{B^{0,\beta}_{\rho,q}}<\infty\},\$$

where

$$\|f\|_{B^{0,eta}_{p,q}} := \|f\|_{p,\mathbb{R}^n} + \|t^{-rac{1}{q}}\ell^eta(t)\omega_1(f,t)_p\|_{q,(0,1)}.$$

Application

Theorem 3

Let $p \in [1,\infty)$, $q \in [1,\infty]$ and let $\beta \in {\rm I\!R}$ be such that

$$eta+rac{1}{q}\geq 0 \quad ext{if } q<\infty \quad ext{and} \quad eta>0 \quad ext{if } q=\infty.$$

If $\Omega \subset \mathbb{R}^n$ is a bounded domain and $\delta < 0$, then

here
here
nd

$$\begin{array}{l}
B^{0,\beta}_{p,q}(\mathbb{R}^{n}) \hookrightarrow Y(\Omega), \\
Y(\Omega) := \left\{ f \in L^{p}(logL)^{\delta}(\Omega); \|f\|_{Y} < \infty \right\} \\
\|f\|_{Y} := \|t^{-\frac{1}{q}}\ell^{\beta}(t)\|\ell^{\delta}(\tau)f^{*}(\tau)\|_{p,(0,t)}\|_{q,(0,1)}.
\end{array}$$

In particular,

w

aı

$$B^{0,eta}_{
ho,q}(\mathbb{R}^n) \hookrightarrow L^{
ho,q}(logL)^{eta+\delta+rac{1}{\max\{p,q\}}}(\Omega).$$

The abstract K-method

Definition

Let Z be a Banach lattice over the measure space $((0,\infty), dy)$ such that

$$0<\|\min\{1,y\}\|_Z<\infty.$$

Let $\overline{A} = (A_0, A_1)$ be a compatible pair of Banach spaces.

The abstract K-method of interpolation $(\cdot, \cdot)_{Z;K}$ is defined by

$$\bar{A}_{Z,K} = (A_0, A_1)_{Z,K} := \{ a \in A_0 + A_1 : \|a\|_{(A_0, A_1)_{Z,K}} < \infty \},\$$

where

$$\|a\|_{Z;K} = \|a\|_{(A_0,A_1)Z;K} := \|K(a,y;\bar{A})\|_{Z((0,\infty);dy)}$$

and $K(a,\cdot;\bar{A})$ stands for the *K*-functional.

 $\bar{A}_{Z,K}$ is the interpolation space with respect to the pair \bar{A} .

Interpolation of UAC operators

$ilde{Q}$ -abundant Banach pair $ar{A}$

Q the cone of quasiconcave functions on $[0,\infty)$

Definition

Let \tilde{Q} be a subcone of Q. We say that a Banach pair $\bar{A} = (A_0, A_1)$ is \tilde{Q} -abundant if there exists a constant $C \in (0, \infty)$ such that for every function $h \in \tilde{Q}$ there exists some $a \in A_0 + A_1$ so that

 $C^{-1}h(t) \leq K(a,t;\overline{A}) \leq C h(t)$ for all $t \in (0,\infty)$.

Let Q_1 and Q_2 be subcones of Q such that $Q_2 \subset Q_1$. Then \bar{A} is Q_1 -abundant $\Rightarrow \bar{A}$ is also Q_2 -abundant.

Important subcones:

$$Q_0 := \{h \in Q : \lim_{y \to 0+} h(y) = 0\}$$

 $Q_{0,\infty} := \{h \in Q_0 : \lim_{y \to \infty} y^{-1}h(y) = 0\}$

Lemma

Consider the following compatible pairs of function spaces:

•
$$\bar{A} = (A_0, A_1) := (L^1(0, \infty), L^\infty(0, \infty));$$

• $\bar{B} = (B_0, B_1) := (L^1(0, \infty), L^1((0, \infty); \frac{1}{y}, dy));$
• $\bar{C} = (C_0, C_1) := (L^\infty(0, \infty), L^\infty((0, \infty); \frac{1}{y}, dy)).$

Then \overline{A} is Q_0 -abundant, \overline{B} is $Q_{0,\infty}$ -abundant and \overline{C} is Q_0 -abundant.

Remark

$$K(f, t; A_0, A_1) = \int_0^t f^*(y) \, dy$$
$$K(f, t; B_0, B_1) \approx \int_0^\infty |f(y)| \min\left\{1, \frac{t}{y}\right\} \, dy = \int_0^t \left(\int_y^\infty \frac{|f(s)|}{s} \, ds\right) \, dy$$
$$K(f, t; C_0, C_1) \approx \sup_{y \in (0,\infty)} |f(y)| \min\left\{1, \frac{t}{y}\right\} = \sup_{y \in (0,t]} y \sup_{s \in [y,\infty)} \frac{|f(s)|}{s}$$

Dilation operator E_t

Definition

Given a Banach lattice Z over the measure space $((0, \infty), dy)$ and $t \in (0, \infty)$, we denote by E_t the dilation operator on Z defined by

 $(E_t f)(y) = f(ty), \quad y \in (0,\infty).$

If \tilde{Q} is a subcone of Q, $Z_{\tilde{Q}} := Z \cap \tilde{Q}$ and $T : Z \to Z$ is an operator, then we put

$$\|T\|_{Z_{\widetilde{Q}}} := \sup_{h \in Z \cap \widetilde{Q}} \frac{\|Ih\|_Z}{\|h\|_Z}.$$

Type of the abstract K-method

Theorem 4

Let Z be a Banach lattice over the measure space $((0, \infty), dy)$ satisfying

 $0<\|\min\{1,y\}\|_Z<\infty.$

Let C be a category of Banach spaces and let C_1 be the subcategory of compatible pairs of spaces from C. Then the abstract K-method is of type φ on C_1 , where

$$\varphi(s,t) := \begin{cases} s \| E_{\frac{t}{s}} \|_{Z_Q} & \text{if } s, t \in (0,\infty), \\ 0 & \text{if } s = 0 \text{ or } t = 0. \end{cases}$$

Moreover, if Z has the Fatou property and C is such that C_1 contains at least one of the pairs $\overline{A}, \overline{B}, \overline{C}$ from Lemma, then the abstract K-method is of sharp type φ .

Weighted Lebesgue space

Definition

$$\mathcal{W}(0,\infty) := \{ f \in \mathcal{M}(0,\infty) : 0 < f < \infty \text{ a.e. on } (0,\infty) \}$$

If $v \in \mathcal{W}(0,\infty)$ and $q \in [1,\infty]$, then

$$L^q\left((0,\infty); v(y), dy\right) := \{f \in \mathcal{M}(0,\infty): \|f\|_{q,v,(0,\infty)} < \infty\},\$$

where

$$\|f\|_{q,v,(0,\infty)} := \|f(y)v(y)\|_{q,(0,\infty)}.$$

The real interpolation method with a function parameter

A particular case of the abstract K-method with

 $Z = L^q\left((0,\infty); rac{1}{w(y)y^{rac{1}{q}}}, dy
ight), \quad ext{where} \quad w \in \mathcal{W}(0,\infty), \ q \in [1,\infty].$

Thus, the weight w and q are such that

$$0 < \left\| rac{\min\left\{1,y
ight\}}{w(y)y^{rac{1}{q}}}
ight\|_{q,(0,\infty)} < \infty.$$

Gustavsson (1978):

The weight w was assumed to be continuous, non-decreasing, and to satisfy the condition

$$\int_0^\infty \overline{w}(t) \min\left\{1, rac{1}{t}
ight\} rac{dt}{t} < \infty,$$

where $\overline{w}(t) := \sup_{s \in (0,\infty)} \frac{w(st)}{w(s)}$.

The norm of dilation operator - the particular case

Theorem 5
Let
$$Z = L^q \left((0,\infty); \frac{1}{w(y)y^{\frac{1}{q}}}, dy \right)$$
, where $w \in \mathcal{W}(0,\infty)$, $q \in [1,\infty]$ and
 $0 < \left\| \frac{\min\{1,y\}}{w(y)y^{\frac{1}{q}}} \right\|_{q,(0,\infty)} < \infty$.
Then
 $\|E_{\tau}\|_{Z_{\tilde{Q}}} \approx \sup_{\substack{\alpha \in (0,\infty) \\ \alpha \in (0,\infty)}} \frac{\|\min\{1,\alpha\tau \cdot\}\|_{Z}}{\|\min\{1,\alpha \cdot\}\|_{Z}}$
for all $\tau \in (0,\infty)$ and any $\tilde{Q} \in \{Q_{0,\infty}, Q_{0}, Q\}$.

Corollary

Let $w \in \mathcal{W}(0,\infty)$ and $q \in [1,\infty]$ be such that

$$0 < \left\|\frac{\min\left\{1, y\right\}}{w(y)y^{\frac{1}{q}}}\right\|_{q,(0,\infty)} < \infty$$

holds. Let C be a category of Banach spaces such that C_1 contains at least one of the pairs $\overline{A}, \overline{B}, \overline{C}$ from Lemma. Then the real interpolation method with the function parameter w is of sharp type φ on C_1 , where

$$\varphi(s,t) = \begin{cases} sg\left(rac{t}{s}\right) & ext{if } s,t\in(0,\infty), \\ 0 & ext{if } s=0 ext{ or } t=0, \end{cases}$$

and

$$g(\tau) := \sup_{\alpha \in (0,\infty)} \frac{\left\| \frac{\min\{1,\alpha\tau \cdot \}}{w(y)y^{\frac{1}{q}}} \right\|_{q,(0,\infty)}}{\left\| \frac{\min\{1,\alpha \cdot \}}{w(y)y^{\frac{1}{q}}} \right\|_{q,(0,\infty)}} \quad \text{for all } \tau \in (0,\infty).$$

Example

Let
$$\beta_0 + \frac{1}{q} \ge 0$$
 if $q < \infty$ or $\beta_0 > 0$ if $q = \infty$,
 $\beta_\infty + \frac{1}{q} < 0$ if $q < \infty$ or $\beta_\infty \le 0$ if $q = \infty$.

Let

$$w(t)=\ell^{-(eta_0,eta_\infty)}(t) \ \ ext{for} \ \ t\in(0,\infty).$$

Hence,

$$Z = L^{q}((0,\infty); t^{-\frac{1}{q}} \ell^{(\beta_{0},\beta_{\infty})}(t), dt) \text{ and } 0 < \left\| \frac{\min\{1,y\}}{w(y)y^{\frac{1}{q}}} \right\|_{q,(0,\infty)} < \infty.$$

Then the real interpolation method with the function parameter w is of sharp type $\varphi,$ where

$$\begin{split} \varphi(s,t) &= s & \text{for all } s,t \in (0,\infty) \text{ with } \frac{t}{s} \in (0,1], \\ \varphi(s,t) &= s\ell^{\beta_0 - \beta_\infty} \left(\frac{t}{s}\right) & \text{for all } s,t \in (0,\infty) \text{ with } \frac{t}{s} \in (1,\infty). \\ \end{split}$$
Thus,

$$\lim_{s\to 0+}\varphi(s,t)=0 \qquad \text{for any fixed } t\in(0,\infty).$$

Bohumír Opic (Prague, Czech Republic)

Interpolation of UAC operators

References

[1] F. Cobos, A. Gogatishvili, B. Opic and L. Pick, Interpolation of uniformly absolutely continuous operators, Math. Nachr. 286 (2013), no. 5-6, 579-599.

[2] D. Edmunds and B. Opic, Limiting variants of Krasnosel'ski's compact interpolation theorem, J. Funct. Anal. 266 (2014), no. 5, 3265-3285.
[3] A. Caetano, A. Gogatishvili and B. Opic, Sharp embeddings of Besov spaces involving only logarithmic smoothness, J. Approx. Theory 152 (2008), no. 2, 188-214.

 [4] A. Caetano, A. Gogatishvili and B. Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness,
 J. Approx. Theory 163 (2011), no. 10, 1373-1399.

[5] A. Caetano, A. Gogatishvili and B. Opic, Compact embeddings of Besov spaces involving only slowly varying smoothness, Czechoslovak Math. J. 61(136) (2011), no. 4, 923-940.

[6] A. Gogatishvili, B. Opic and W. Trebels, Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr. 278 (2005), no. 1–2, 86-107.