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Motivation

Ω ⊂ Rn, Ω ∈ C 0,1, 1 ≤ p < n,

W 1,p(Ω) ↪→ L
np

n−p
,p(Ω)

Lp(Ω) ↪→ Lp(Ω)

1 ≤ q < np
n−p

W 1,p(Ω) ↪→↪→ Lq(Ω)

Lp(Ω) ↪→ Lp(Ω)

1 ≤ q < p

W 1,p(Ω) ↪→ L
np

n−p
,p(Ω)

Lp(Ω)
∗
↪→ Lq(Ω)

sequentially compactness in BFSa ⇔
⇔ (sequentially compactness in measure + UAC)
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Banach function space

Definition

Let (R, µ) be a measure space. We denote by M(R) the set of all
measurable functions on R.
A Banach space X (R) ⊂M(R), equipped with the norm ‖ · ‖X (R), is said
to be a Banach function space over the measure space (R, µ) if the
following axioms hold for every f , g , fn ∈M(R):

0 ≤ g ≤ f µ-a.e. implies ‖g‖X (R) ≤ ‖f ‖X (R); (P1)

0 ≤ fn ↗ f µ-a.e. implies ‖fn‖X (R) ↗ ‖f ‖X (R); (P2)

‖χE‖X (R) <∞ for every E ⊂ R, µ(E ) <∞; (P3)

for every E ⊂ R,with µ(E ) <∞, ∃CE ∈ (0,∞) such that (P4)∫
E

f ≤ CE‖f ‖X (R) for every f ∈ X (R).
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Banach lattice

Definition

If a Banach space X (R) ⊂M(R) satisfies (P1), then we say that X is
a Banach lattice over the measure space (R, µ).

Moreover, if a Banach lattice X also satisfies (P2), we say that it has
the Fatou property.
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Uniformly absolutely continuous set

Definition

A function f in a Banach function space X (R) is said to have absolutely
continuous norm in X (R) if ‖f χEn‖X (R) → 0 for every sequence {En} of
subsets of R such that χEn → 0 µ–a.e.

A set M ⊂ X (R) is uniformly absolutely continuous in X (R) if

lim
n→∞

sup
f ∈M
‖f χEn‖X (R) = 0 for every sequence En such that χEn → 0 µ-a.e.
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Uniformly absolutely continuous operator

Definition

Let A be a Banach space and let B be a Banach function space over
a measure space (R, µ). Let T be a bounded linear operator defined on A
with values in B (notation T : A→ B). Then T is said to be uniformly

absolutely continuous (notation T : A
∗→ B) if the image under T of the

unit ball in A is uniformly absolutely continuous in B. This means that

lim
n→∞

sup
‖f ‖A≤1

‖χEn · Tf ‖B = 0

for every sequence {En} of subsets of R such that χEn → 0 µ–a.e.
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The class Φ

Definition

We say that a function ϕ : [0,∞)× [0,∞)→ [0,∞), ϕ 6≡ 0, belongs to
the class Φ if it has the following properties:

(i) ϕ(0, 0) = 0,

(ii) ϕ(s, t) is almost non-decreasing in each variable,

(iii) ϕ(s, t) is positively homogeneous of degree 1, that is,

ϕ(λs, λt) = λϕ(s, t) for every λ, s, t ∈ [0,∞).

The cone Q

Definition

A non-negative function h on [0,∞) is called quasiconcave (notation
h ∈ Q) if h(t) = 0 if and only if t = 0, h is non-decreasing on (0,∞) and
h(t)
t is non-increasing on (0,∞).
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Remarks

(i) If ϕ ∈ Φ, then ϕ is quasiconcave in each variable.
Moreover, ϕ(s, t) > 0 if s 6= 0 and t 6= 0 and the function

ϕ∗(t) := ϕ(1, t) for all t ∈ [0,∞)

is quasiconcave and

ϕ(s, t) = sϕ
(

1,
t

s

)
= sϕ∗

( t

s

)
for all s ∈ (0,∞).

(ii) On the other hand, if ϕ∗ : [0,∞)→ [0,∞) is quasiconcave, then

ϕ(s, t) :=

{
sϕ∗

(
t
s

)
if s, t ∈ (0,∞),

0 if s = 0 or t = 0,
satisfies ϕ ∈ Φ.

(iii) If ϕ ∈ Φ, then there exists a constant C ∈ (0,∞) such that

ϕ(s, t) ≤ C max{s, t} for every s, t ∈ [0,∞).
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Type of interpolation method

Definition

Let ϕ ∈ Φ, let C be a category of Banach spaces and let C1 be the
subcategory of compatible pairs of spaces from C.
An interpolation method F is said to be of type ϕ on C1 if, for all
s, t ∈ [0,∞),

sup{‖T‖F(Ā)→F(B̄);

‖T‖A0→B0 ≤ s, ‖T‖A1→B1 ≤ t, Ā, B̄ ∈ C1, T ∈ L(Ā, B̄)} . ϕ(s, t)

(note that Ā = (A0,A1), B̄ = (B0,B1)).
An interpolation method F is said to be of sharp type ϕ on C1 if, for all
s, t ∈ [0,∞),

sup{‖T‖F(Ā)→F(B̄);

‖T‖A0→B0 ≤ s, ‖T‖A1→B1 ≤ t, Ā, B̄ ∈ C1, T ∈ L(Ā, B̄)} ≈ ϕ(s, t).
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First results

Theorem 1

Let ϕ ∈ Φ, let C be a category of Banach spaces and let C1 be the
subcategory of compatible pairs of spaces from C. Let Ā = (A0,A1) ∈ C1

and B̄ = (B0,B1) ∈ C1. Suppose that B0 and B1 are Banach function
spaces over the same measure space (R, µ). Assume that F is
an interpolation method of type ϕ on C1, where ϕ satisfies

lim
s→0+

ϕ(s, t) = 0 for any fixed t ∈ (0,∞).

If T is a linear operator such that

T : A0
∗→ B0

and

T : A1 → B1,
then

T : F(Ā)
∗→ F(B̄).
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Theorem 2

Let ϕ ∈ Φ, let C be a category of Banach spaces and let C1 be the
subcategory of compatible pairs of spaces from C. Let Ā = (A0,A1) ∈ C1

and B̄ = (B0,B1) ∈ C1. Suppose that B0 and B1 are Banach function
spaces over the same measure space (R, µ). Assume that F is an
interpolation method of type ϕ on C1, where ϕ satisfies

lim
t→0+

ϕ(s, t) = 0 for any fixed s ∈ (0,∞).

If T is a linear operator such that

T : A0 → B0

and
T : A1

∗→ B1,

then
T : F(Ā)

∗→ F(B̄).
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Besov space B0,β
p,q (Rn)

Definition

Let p ∈ [1,∞) and q ∈ [1,∞]. Denote `(t) := (1 + | log t|), t ∈ (0, 1),
and let β ∈ IR be such that

β +
1

q
≥ 0 if q <∞ and β ∈ (0,∞) if q =∞.

Let ω1(f , t)p be the value of the first-order modulus of continuity of
a function f at t with respect to Lp(Rn), defined by

ω1(f , t)p := sup
|h|≤t
‖f (x + h)− f (x)‖p,Rn ,

where h ∈ Rn and t ∈ ([0,∞).
The Besov space

B0,β
p,q (Rn) := {f ∈ Lp(Rn) : ‖f ‖

B0,β
p,q

<∞},
where

‖f ‖
B0,β

p,q
:= ‖f ‖p,Rn + ‖t−

1
q `β(t)ω1(f , t)p‖q,(0,1).
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Application

Theorem 3

Let p ∈ [1,∞), q ∈ [1,∞] and let β ∈ IR be such that

β +
1

q
≥ 0 if q <∞ and β > 0 if q =∞.

If Ω ⊂ Rn is a bounded domain and δ < 0, then

B0,β
p,q (Rn) ↪→↪→ Y (Ω),

where
Y (Ω) :=

{
f ∈ Lp(logL)δ(Ω); ‖f ‖Y <∞

}
and

‖f ‖Y := ‖t−
1
q `β(t)‖`δ(τ)f ∗(τ)‖p,(0,t)‖q,(0,1).

In particular,
B0,β

p,q (Rn) ↪→↪→ Lp,q(logL)
β+δ+ 1

max{p,q} (Ω).
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The abstract K -method

Definition

Let Z be a Banach lattice over the measure space ((0,∞), dy) such that

0 < ‖min{1, y}‖Z <∞.

Let Ā = (A0,A1) be a compatible pair of Banach spaces.

The abstract K -method of interpolation (·, ·)Z ;K is defined by

ĀZ ,K = (A0,A1)Z ,K := {a ∈ A0 + A1 : ‖a‖(A0,A1)Z ;K
<∞},

where

‖a‖Z ;K = ‖a‖(A0,A1)Z ;K
:=
∥∥K (a, y ; Ā)

∥∥
Z((0,∞);dy)

and K (a, · ; Ā) stands for the K -functional.

ĀZ ,K is the interpolation space with respect to the pair Ā.
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Q̃-abundant Banach pair Ā

Q .... the cone of quasiconcave functions on [0,∞)

Definition

Let Q̃ be a subcone of Q. We say that a Banach pair Ā = (A0,A1)
is Q̃-abundant if there exists a constant C ∈ (0,∞) such that for every
function h ∈ Q̃ there exists some a ∈ A0 + A1 so that

C−1h(t) ≤ K (a, t; Ā) ≤ C h(t) for all t ∈ (0,∞).

Let Q1 and Q2 be subcones of Q such that Q2 ⊂ Q1. Then

Ā is Q1-abundant ⇒ Ā is also Q2-abundant.

Important subcones:
Q0 := {h ∈ Q : lim

y→0+
h(y) = 0}

Q0,∞ := {h ∈ Q0 : lim
y→∞

y−1h(y) = 0}
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Lemma

Consider the following compatible pairs of function spaces:

Ā = (A0,A1) := (L1(0,∞), L∞(0,∞));

B̄ = (B0,B1) := (L1(0,∞), L1((0,∞); 1
y , dy));

C̄ = (C0,C1) := (L∞(0,∞), L∞((0,∞); 1
y , dy)).

Then Ā is Q0-abundant, B̄ is Q0,∞-abundant and C̄ is Q0-abundant.

Remark

K (f , t; A0,A1) =

∫ t

0
f ∗(y) dy

K (f , t; B0,B1) ≈
∫ ∞

0
|f (y)|min

{
1,

t

y

}
dy =

∫ t

0

(∫ ∞
y

|f (s)|
s

ds

)
dy

K (f , t; C0,C1) ≈ sup
y∈(0,∞)

|f (y)|min

{
1,

t

y

}
= sup

y∈(0,t]
y sup

s∈[y ,∞)

|f (s)|
s
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Dilation operator Et

Definition

Given a Banach lattice Z over the measure space ((0,∞), dy) and
t ∈ (0,∞), we denote by Et the dilation operator on Z defined by

(Et f ) (y) = f (ty), y ∈ (0,∞).

If Q̃ is a subcone of Q, ZQ̃ := Z ∩ Q̃ and T : Z → Z is an operator, then
we put

‖T‖ZQ̃
:= sup

h∈Z∩Q̃

‖Th‖Z
‖h‖Z

.
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Type of the abstract K -method

Theorem 4

Let Z be a Banach lattice over the measure space ((0,∞), dy) satisfying

0 < ‖min{1, y}‖Z <∞.

Let C be a category of Banach spaces and let C1 be the subcategory of
compatible pairs of spaces from C. Then the abstract K -method is of type
ϕ on C1, where

ϕ(s, t) :=

{
s‖E t

s
‖ZQ

if s, t ∈ (0,∞),

0 if s = 0 or t = 0.

Moreover, if Z has the Fatou property and C is such that C1 contains at
least one of the pairs Ā, B̄, C̄ from Lemma, then the abstract K -method is
of sharp type ϕ.
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Weighted Lebesgue space

Definition

W(0,∞) := {f ∈M(0,∞) : 0 < f <∞ a.e. on (0,∞)}

If v ∈ W(0,∞) and q ∈ [1,∞], then

Lq ((0,∞); v(y), dy) := {f ∈M(0,∞) : ‖f ‖q,v ,(0,∞) <∞},

where
‖f ‖q,v ,(0,∞) := ‖f (y)v(y)‖q,(0,∞).
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The real interpolation method with a function parameter

A particular case of the abstract K -method with

Z = Lq

(
(0,∞); 1

w(y)y
1
q
, dy

)
, where w ∈ W(0,∞), q ∈ [1,∞].

Thus, the weight w and q are such that

0 <

∥∥∥∥∥min {1, y}

w(y)y
1
q

∥∥∥∥∥
q,(0,∞)

<∞.

Gustavsson (1978):
The weight w was assumed to be continuous, non-decreasing, and to
satisfy the condition ∫ ∞

0
w(t) min

{
1,

1

t

}
dt

t
<∞,

where w(t) := sups∈(0,∞)
w(st)
w(s) .
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The norm of dilation operator - the particular case

Theorem 5

Let Z = Lq

(
(0,∞); 1

w(y)y
1
q
, dy

)
, where w ∈ W(0,∞), q ∈ [1,∞] and

0 <

∥∥∥∥∥min {1, y}

w(y)y
1
q

∥∥∥∥∥
q,(0,∞)

<∞.

Then

‖Eτ‖ZQ̃
≈ sup

α∈(0,∞)

‖min{1, ατ ·}‖Z
‖min{1, α ·}‖Z

for all τ ∈ (0,∞) and any Q̃ ∈ {Q0,∞,Q0,Q}.
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Corollary

Let w ∈ W(0,∞) and q ∈ [1,∞] be such that

0 <

∥∥∥∥∥min {1, y}

w(y)y
1
q

∥∥∥∥∥
q,(0,∞)

<∞

holds. Let C be a category of Banach spaces such that C1 contains at least
one of the pairs Ā, B̄, C̄ from Lemma. Then the real interpolation method
with the function parameter w is of sharp type ϕ on C1, where

ϕ(s, t) =

{
sg
(

t
s

)
if s, t ∈ (0,∞),

0 if s = 0 or t = 0,

and

g(τ) := sup
α∈(0,∞)

∥∥∥∥min{1,ατ · }

w(y)y
1
q

∥∥∥∥
q,(0,∞)∥∥∥∥min{1,α · }

w(y)y
1
q

∥∥∥∥
q,(0,∞)

for all τ ∈ (0,∞).
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Example

Let
β0 +

1

q
≥ 0 if q <∞ or β0 > 0 if q =∞,

β∞ +
1

q
< 0 if q <∞ or β∞ ≤ 0 if q =∞.

Let
w(t) = `−(β0,β∞)(t) for t ∈ (0,∞).

Hence,

Z = Lq((0,∞); t−
1
q `(β0,β∞)(t), dt) and 0 <

∥∥∥∥∥min {1, y}

w(y)y
1
q

∥∥∥∥∥
q,(0,∞)

<∞.

Then the real interpolation method with the function parameter w is of
sharp type ϕ, where

ϕ(s, t) = s for all s, t ∈ (0,∞) with
t

s
∈ (0, 1],

ϕ(s, t) = s`β0−β∞
( t

s

)
for all s, t ∈ (0,∞) with

t

s
∈ (1,∞).

Thus,
lim

s→0+
ϕ(s, t) = 0 for any fixed t ∈ (0,∞).
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