Pointwise Multipliers for Sobolev and Besov Spaces of Dominating Mixed Smoothness

Van Kien Nguyen

Friedrich-Schiller-University Jena

Prague, July 4 - 9, 2016

Van Kien Nguyen (FSU Jena)

Pointwise Multipliers

Prague, July 4 - 9, 2016 1 / 14

In my talk

- we study the algebra property of Sobolev spaces $S_p^m W$ and Besov spaces $S_{p,p}^t B$ of dominating mixed smoothness
- and we shall give the characterization for the space of all pointwise multipliers of these spaces.

The spaces $S_p^m W$ and $S_{p,p}^t B$ are studied in some areas of mathematics:

- approximation theory in high dimension
- information-based complexity
- partial differential equations and learning theory.

Isotropic Besov spaces

All the spaces are defined on \mathbb{R}^d .

Let $1 \leq p \leq \infty$, $M \in \mathbb{N}$ and $f \in L_p$. By $\Delta_h^M f$ we denote the *M*-th order difference of f. Here

 $\Delta_b^1 f(x) := f(x+h) - f(x), \quad \Delta_b^M f(x) := \Delta_b^1 (\Delta_b^{M-1} f)(x), \quad h \in \mathbb{R}^d.$

Definition. Let $1 \le p \le \infty$, t > 0 and M > t. Then the isotropic Besov space $B_{p,p}^t$ is the collection of all $f \in L_p$ such that

$$\|f|B_{p,p}^t\| = \|f|L_p\| + \Big(\sum_{j=0}^{\infty} 2^{jtp} \sup_{|h|<2^{-j}} \|\Delta_h^M f|L_p\|^p\Big)^{1/p} < \infty.$$

Definition. Let $1 \le p \le \infty$ and t > 0.

(i) A function $g \in L_1^{\text{loc}}$ is called a pointwise multiplier for $B_{p,p}^t$ if for every $f \in B_{p,p}^t$ we have $gf \in B_{p,p}^t$. By $M(B_{p,p}^t)$ we denote the collection of all pointwise multipliers for $B_{p,p}^t$.

(ii) The space $B_{p,p}^t$ is called a multiplication algebra (or an algebra) if for $f, g \in B_{p,p}^t$ we have $fg \in B_{p,p}^t$ and there exists C > 0 s.t.

 $\|fg|B_{p,p}^t\| \leq C \|f|B_{p,p}^t\| \cdot \|g|B_{p,p}^t\|.$

Remark. We can show that if $g \in M(B_{p,p}^t)$ then the mapping $f \to gf$ yields a bounded linear operator in $B_{p,p}^t$.

$B_{p,p}^t$ is an algebra

Theorem. (Peetre '70, Triebel '77) Let $1 \le p \le \infty$ and t > 0. Then $B_{p,p}^t$ is a multiplication algebra if and only if either t > d/p or t = d and p = 1.

Let ψ be a non-negative C_0^{∞} function. We put $\psi_{\mu}(x) = \psi(x - \mu)$, $\mu \in \mathbb{Z}^d$, $x \in \mathbb{R}^d$ and assume that $\sum_{\mu \in \mathbb{Z}^d} \psi_{\mu}(x) = 1$ for $x \in \mathbb{R}^d$. We define $B_{p,p,\mathrm{unif}}^t$ as the collection of all $f \in L_1^{loc}$ s.t.

$$\|f|B^t_{p,p,\mathrm{unif}}\|_\psi = \sup_{\mu\in\mathbb{Z}^d} \|\psi_\mu f|B^t_{p,p}\| < \infty.$$

Theorem. (Peetre '76, Maz'ya and Shaposnikova '85) Let $1 \le p \le \infty$. If either t > d/p or t = d, p = 1. Then

$$M(B_{p,p}^t) = B_{p,p,\mathrm{unif}}^t.$$

Let $f \in L_p$, $e \subset \{1, ..., d\}$, $h \in \mathbb{R}^d$ and $m \in \mathbb{N}$. The mixed (m, e)th difference operator $\Delta_h^{m, e}$ is defined as

$$\Delta_h^{m,e} := \prod_{i \in e} \Delta_{h_i,i}^m$$
 and $\Delta_h^{m,\emptyset} := \mathsf{Id}$,

where $\Delta_{h_i,i}^m$ is the univariate operator applied to the *i*-th coordinate of *f* with the other variables kept fixed. We define

$$\omega_m^e(f,s)_p := \sup_{|h_i| < s_i, i \in e} \|\Delta_h^{m,e}(f,\cdot)|L_p\| , s \in [0,1]^d$$

in particular, $\omega_m^{\emptyset}(f,s)_p = \|f|L_p\|.$

Besov spaces of dominating mixed smoothness

Definition. Let $1 \le p \le \infty$, $m \in \mathbb{N}$ and m > t > 0. Then the Besov space of dominating mixed smoothness $S_{p,p}^t B$ is the collection of all $f \in L_p$ such that

$$\|f|S_{p,p}^{t}B\|^{(m)} := \sum_{e \in \{1,...,d\}} \left(\sum_{k \in \mathbb{N}_{0}^{d}(e)} 2^{t|k|_{1}p} \omega_{m}^{e}(f, 2^{-k})_{p}^{p}\right)^{1/p} < \infty.$$

Here $\mathbb{N}_{0}^{d}(e) = \{k \in \mathbb{N}_{0}^{d} : k_{i} = 0 \text{ if } i \notin e\}.$
Remark. (i) If $d = 1$, then we have $S_{p,p}^{t}B(\mathbb{R}) = B_{p,p}^{t}(\mathbb{R}).$
(ii) The space $S_{p,p}^{t}B$ has a cross-norm, i.e., if $f_{i} \in B_{p,p}^{t}(\mathbb{R}), i = 1, ..., d$, then

$$f(x) = \prod_{i=1}^{d} f_i(x_i) \in S_{p,p}^t B(\mathbb{R}^d) \text{ and } \|f\|S_{p,p}^t B(\mathbb{R}^d)\| = \prod_{i=1}^{d} \|f_i\|B_{p,p}^t(\mathbb{R})\|.$$

Equivalent norms

Let $\{\varphi_i\}_{i=0}^{\infty}$ be a smooth dyadic decomposition of \mathbb{R} , e.g., $\varphi_0 \in C_0^{\infty}(\mathbb{R})$ is a non-negative function with $\varphi_0 = 1$ on [-1,1], supp $\varphi_0 \subset [-2,2]$ and $\varphi_i(\xi) = \varphi_0(2^{-j}\xi) - \varphi_0(2^{-j+1}\xi)$ if $j \ge 1$. For $k \in \mathbb{N}_0^d$ we define

 $\varphi_k(\mathbf{x}) := \varphi_{k_1}(\mathbf{x}_1) \cdot \ldots \cdot \varphi_{k_d}(\mathbf{x}_d)$

then we obtain the smooth dyadic decomposition of unity on \mathbb{R}^d . **Theorem.** Let $1 \le p \le \infty$, t > 0. Then $S_{p,p}^t B$ is the collection of all temper distributions f s.t.

$$\|f|S_{\rho,p}^{t}B\|^{\varphi} := \Big(\sum_{k\in\mathbb{N}_{0}^{d}} 2^{t|k|_{1}p} \|\mathcal{F}^{-1}[\varphi_{k}\mathcal{F}f]|L_{p}\|^{p}\Big)^{1/p} < \infty.$$

Van Kien Nguyen (FSU Jena)

The result for $S_{p,p}^t B$

With the similar notions of pointwise multiplier and algebra as above we have:

Theorem. Let $1 \le p \le \infty$ and t > 0.

(i) The space $S_{p,p}^t B$ is a multiplication algebra if and only if either t > 1/p or p = t = 1.

(ii) If either t > 1/p or p = t = 1. Then we have

 $M(S_{\rho,\rho}^tB)=S_{\rho,\rho,\mathrm{unif}}^tB.$

Remark. The conditions t > 1/p or t = p = 1 imply that

 $S_{p,p}^t B \hookrightarrow C.$

Proof of (i). Let $t < m \le t + 1$. The main idea is to use

$$\Delta_h^{2m,e}(fg)(x) = \sum_{0 \le u_i \le 2m} C_u \Delta_h^{2m-u,e} f(x+u \diamond h) \Delta_h^{u,e} g(x).$$

Proof of (ii). We employ the result in (i) and localization property of $S_{p,p}^{t}B$, i.e., for $1 \leq p \leq \infty$ and t > 0 we have

$$\|f|S_{\rho,\rho}^tB\|\asymp \Big(\sum_{\mu\in\mathbb{Z}^d}\|\psi_{\mu}f|S_{\rho,\rho}^tB\|^p\Big)^{1/\rho}.$$

Recall $\psi \in C_0^{\infty}$, $\psi_{\mu}(x) = \psi(x - \mu)$ and $\sum_{\mu \in \mathbb{Z}^d} \psi_{\mu}(x) = 1$.

Sobolev spaces of dominating mixed smoothness

Definition. Let $m \in \mathbb{N}_0$, $1 . The Sobolev space of dominating mixed smoothness <math>S_p^m W$ is the collection of all $f \in L_p$ s.t.

$$\|f|S_p^mW\|:=\sum_{\alpha\in\mathbb{N}_0^d,\alpha_i\leq m}\|D^{\alpha}f|L_p\|<\infty.$$

Remark. (i) If d = 1, then we have $S_p^m W(\mathbb{R}) = W_p^m(\mathbb{R})$. (ii) If m = 0 then $S_p^0 W = L_p$ is not a multiplication algebra. (iii) If $m \in \mathbb{N}$ we have $S_p^m W \hookrightarrow C$. **Theorem.** Let $m \in \mathbb{N}$ and $1 . Then the space <math>S_p^m W$ is an algebra and

$$M(S_p^m W) = S_{p,\mathrm{unif}}^m W.$$

We refer to Moser ('66), Strichartz ('67) for Sobolev spaces $W_{p_{e}}^{m}$.

Moser ('66) showed that there exists a constant C > 0 s.t.

 $\|fg|W_{2}^{m}\| \leq C(\|f|W_{2}^{m}\| \cdot \|g|L_{\infty}\| + \|f|L_{\infty}\| \cdot \|g|W_{2}^{m}\|)$

holds for all $f, g \in W_2^m \cap L_\infty$.

Theorem. (Peetre '76, Runst '86) Let A be either isotropic Sobolev spaces W_p^m (with $m \in \mathbb{N}_0, 1) or Besov spaces <math>B_{p,p}^t$ (with $t > 0, 1 \le p \le \infty$). Then there exists a constant C > 0 s.t.

 $||fg|A|| \leq C(||f|A|| \cdot ||g|L_{\infty}|| + ||f|L_{\infty}|| \cdot ||g|A||)$

holds for all $f, g \in A \cap L_{\infty}$.

Dominating mixed smoothness is different

Normally, spaces of dominating mixed smoothness (d > 1) have similar properties as isotropic spaces with d = 1. However in the case of Moser-type inequality, the picture is different.

Theorem. Let d > 1. By *SA* we denote the Sobolev spaces $S_p^m W$ (with $m \in \mathbb{N}, 1) or Besov spaces <math>S_{p,p}^t B$ (with $t > 1/p, 1 \le p \le \infty$). Then there is no constant C > 0 s.t.

 $\|fg|SA\| \leq C(\|f|SA\| \cdot \|g|L_{\infty}\| + \|f|L_{\infty}\| \cdot \|g|SA\|)$

holds for all $f, g \in SA$.

Remark. If m = 0 (in $S_p^m W$) or d = 1 we go back to the isotropic case.

Thank you very much!

Van Kien Nguyen (FSU Jena)

Pointwise Multipliers

Prague, July 4 - 9, 2016 14 / 14

イロト 不得下 イヨト イヨト 二日