Pointwise Multipliers for Sobolev and Besov Spaces of

Dominating Mixed Smoothness

Van Kien Nguyen

Friedrich-Schiller-University Jena
Prague, July 4-9, 2016

Overview

In my talk

- we study the algebra property of Sobolev spaces $S_{p}^{m} W$ and Besov spaces $S_{p, p}^{t} B$ of dominating mixed smoothness
- and we shall give the characterization for the space of all pointwise multipliers of these spaces.

The spaces $S_{p}^{m} W$ and $S_{p, p}^{t} B$ are studied in some areas of mathematics:

- approximation theory in high dimension
- information-based complexity
- partial differential equations and learning theory.

Isotropic Besov spaces

All the spaces are defined on \mathbb{R}^{d}.
Let $1 \leq p \leq \infty, M \in \mathbb{N}$ and $f \in L_{p}$. By $\Delta_{h}^{M} f$ we denote the M-th order difference of f. Here

$$
\Delta_{h}^{1} f(x):=f(x+h)-f(x), \quad \Delta_{h}^{M} f(x):=\Delta_{h}^{1}\left(\Delta_{h}^{M-1} f\right)(x), \quad h \in \mathbb{R}^{d} .
$$

Definition. Let $1 \leq p \leq \infty, t>0$ and $M>t$. Then the isotropic Besov space $B_{p, p}^{t}$ is the collection of all $f \in L_{p}$ such that

$$
\left\|f\left|B_{p, p}^{t}\|=\| f\right| L_{p}\right\|+\left(\sum_{j=0}^{\infty} 2^{j t p} \sup _{|h|<2^{-j}}\left\|\Delta_{h}^{M} f \mid L_{p}\right\|^{p}\right)^{1 / p}<\infty
$$

Pointwise multipliers and multiplication algebras

Definition. Let $1 \leq p \leq \infty$ and $t>0$.
(i) A function $g \in L_{1}^{\text {loc }}$ is called a pointwise multiplier for $B_{p, p}^{t}$ if for every $f \in B_{p, p}^{t}$ we have $g f \in B_{p, p}^{t}$. By $M\left(B_{p, p}^{t}\right)$ we denote the collection of all pointwise multipliers for $B_{p, p}^{t}$.
(ii) The space $B_{p, p}^{t}$ is called a multiplication algebra (or an algebra) if for $f, g \in B_{p, p}^{t}$ we have $f g \in B_{p, p}^{t}$ and there exists $C>0$ s.t.

$$
\left\|f g\left|B_{p, p}^{t}\|\leq C\| f\right| B_{p, p}^{t}\right\| \cdot\left\|g \mid B_{p, p}^{t}\right\| .
$$

Remark. We can show that if $g \in M\left(B_{p, p}^{t}\right)$ then the mapping $f \rightarrow g f$ yields a bounded linear operator in $B_{p, p}^{t}$.
$B_{p, p}^{t}$ is an algebra
Theorem. (Peetre '70, Triebel '77) Let $1 \leq p \leq \infty$ and $t>0$. Then $B_{p, p}^{t}$ is a multiplication algebra if and only if either $t>d / p$ or $t=d$ and $p=1$.

Let ψ be a non-negative C_{0}^{∞} function. We put $\psi_{\mu}(x)=\psi(x-\mu)$, $\mu \in \mathbb{Z}^{d}, x \in \mathbb{R}^{d}$ and assume that $\sum_{\mu \in \mathbb{Z}^{d}} \psi_{\mu}(x)=1$ for $x \in \mathbb{R}^{d}$. We define $B_{p, p, \text { unif }}^{t}$ as the collection of all $f \in L_{1}^{\text {loc }}$ s.t.

$$
\left\|f\left|B_{p, p, \text { unif }}^{t}\left\|_{\psi}=\sup _{\mu \in \mathbb{Z}^{d}}\right\| \psi_{\mu} f\right| B_{p, p}^{t}\right\|<\infty
$$

Theorem. (Peetre '76, Maz'ya and Shaposnikova '85) Let $1 \leq p \leq \infty$. If either $t>d / p$ or $t=d, p=1$. Then

$$
M\left(B_{p, p}^{t}\right)=B_{p, p, \text { unif }}^{t} .
$$

Mixed differences

Let $f \in L_{p}, e \subset\{1, \ldots, d\}, h \in \mathbb{R}^{d}$ and $m \in \mathbb{N}$. The mixed (m, e)th difference operator $\Delta_{h}^{m, e}$ is defined as

$$
\Delta_{h}^{m, e}:=\prod_{i \in e} \Delta_{h_{i}, i}^{m} \quad \text { and } \quad \Delta_{h}^{m, \emptyset}:=\mathrm{ld}
$$

where $\Delta_{h_{i}, i}^{m}$ is the univariate operator applied to the i-th coordinate of f with the other variables kept fixed. We define

$$
\omega_{m}^{e}(f, s)_{p}:=\sup _{\left|h_{i}\right|<s_{i}, i \in e}\left\|\Delta_{h}^{m, e}(f, \cdot) \mid L_{p}\right\| \quad, \quad s \in[0,1]^{d}
$$

in particular, $\omega_{m}^{\emptyset}(f, s)_{p}=\left\|f \mid L_{p}\right\|$.

Besov spaces of dominating mixed smoothness

Definition. Let $1 \leq p \leq \infty, m \in \mathbb{N}$ and $m>t>0$. Then the Besov space of dominating mixed smoothness $S_{p, p}^{t} B$ is the collection of all $f \in L_{p}$ such that

$$
\left\|f \mid S_{p, p}^{t} B\right\|^{(m)}:=\sum_{e \subset\{1, \ldots, d\}}\left(\sum_{k \in \mathbb{N}_{0}^{d}(e)} 2^{t|k|_{1} p} \omega_{m}^{e}\left(f, 2^{-k}\right)_{p}^{p}\right)^{1 / p}<\infty .
$$

Here $\mathbb{N}_{0}^{d}(e)=\left\{k \in \mathbb{N}_{0}^{d}: k_{i}=0\right.$ if $\left.i \notin e\right\}$.
Remark. (i) If $d=1$, then we have $S_{p, p}^{t} B(\mathbb{R})=B_{p, p}^{t}(\mathbb{R})$.
(ii) The space $S_{p, p}^{t} B$ has a cross-norm, i.e., if $f_{i} \in B_{p, p}^{t}(\mathbb{R}), i=1, \ldots, d$, then
$f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right) \in S_{p, p}^{t} B\left(\mathbb{R}^{d}\right) \quad$ and $\quad\left\|f\left|S_{p, p}^{t} B\left(\mathbb{R}^{d}\right)\left\|=\prod_{i=1}^{d}\right\| f_{i}\right| B_{p, p}^{t}(\mathbb{R})\right\|$.

Equivalent norms

Let $\left\{\varphi_{j}\right\}_{j=0}^{\infty}$ be a smooth dyadic decomposition of \mathbb{R}, e.g., $\varphi_{0} \in C_{0}^{\infty}(\mathbb{R})$ is a non-negative function with $\varphi_{0}=1$ on $[-1,1], \operatorname{supp} \varphi_{0} \subset[-2,2]$ and $\varphi_{j}(\xi)=\varphi_{0}\left(2^{-j} \xi\right)-\varphi_{0}\left(2^{-j+1} \xi\right)$ if $j \geq 1$. For $k \in \mathbb{N}_{0}^{d}$ we define

$$
\varphi_{k}(x):=\varphi_{k_{1}}\left(x_{1}\right) \cdot \ldots \cdot \varphi_{k_{d}}\left(x_{d}\right)
$$

then we obtain the smooth dyadic decomposition of unity on \mathbb{R}^{d}.
Theorem. Let $1 \leq p \leq \infty, t>0$. Then $S_{p, p}^{t} B$ is the collection of all temper distributions f s.t.

$$
\left\|f \mid S_{p, p}^{t} B\right\|^{\varphi}:=\left(\sum_{k \in \mathbb{N}_{0}^{d}} 2^{t|k|_{1} p}\left\|\mathcal{F}^{-1}\left[\varphi_{k} \mathcal{F} f\right] \mid L_{p}\right\|^{p}\right)^{1 / p}<\infty .
$$

The result for $S_{p, p}^{t} B$

With the similar notions of pointwise multiplier and algebra as above we have:

Theorem. Let $1 \leq p \leq \infty$ and $t>0$.
(i) The space $S_{p, p}^{t} B$ is a multiplication algebra if and only if either $t>1 / p$ or $p=t=1$.
(ii) If either $t>1 / p$ or $p=t=1$. Then we have

$$
M\left(S_{p, p}^{t} B\right)=S_{p, p, \text { unif }}^{t} B
$$

Remark. The conditions $t>1 / p$ or $t=p=1$ imply that

$$
S_{p, p}^{t} B \hookrightarrow C .
$$

Proof

Proof of (i). Let $t<m \leq t+1$. The main idea is to use

$$
\Delta_{h}^{2 m, e}(f g)(x)=\sum_{0 \leq u_{i} \leq 2 m} C_{u} \Delta_{h}^{2 m-u, e} f(x+u \diamond h) \Delta_{h}^{u, e} g(x)
$$

Proof of (ii). We employ the result in (i) and localization property of $S_{p, p}^{t} B$, i.e., for $1 \leq p \leq \infty$ and $t>0$ we have

$$
\left\|f \mid S_{p, p}^{t} B\right\| \asymp\left(\sum_{\mu \in \mathbb{Z}^{d}}\left\|\psi_{\mu} f \mid S_{p, p}^{t} B\right\|^{p}\right)^{1 / p}
$$

Recall $\psi \in C_{0}^{\infty}, \psi_{\mu}(x)=\psi(x-\mu)$ and $\sum_{\mu \in \mathbb{Z}^{d}} \psi_{\mu}(x)=1$.

Sobolev spaces of dominating mixed smoothness

Definition. Let $m \in \mathbb{N}_{0}, 1<p<\infty$. The Sobolev space of dominating mixed smoothness $S_{p}^{m} W$ is the collection of all $f \in L_{p}$ s.t.

$$
\left\|f\left|S_{p}^{m} W\left\|:=\sum_{\alpha \in \mathbb{N}_{0}^{d}, \alpha_{i} \leq m}\right\| D^{\alpha} f\right| L_{p}\right\|<\infty .
$$

Remark. (i) If $d=1$, then we have $S_{p}^{m} W(\mathbb{R})=W_{p}^{m}(\mathbb{R})$.
(ii) If $m=0$ then $S_{p}^{0} W=L_{p}$ is not a multiplication algebra.
(iii) If $m \in \mathbb{N}$ we have $S_{p}^{m} W \hookrightarrow C$.

Theorem. Let $m \in \mathbb{N}$ and $1<p<\infty$. Then the space $S_{p}^{m} W$ is an algebra and

$$
M\left(S_{p}^{m} W\right)=S_{p, \text { unif }}^{m} W
$$

We refer to Moser ('66), Strichartz ('67) for Sobolev spaces W_{p}^{m}.

Moser-type inequality

Moser ('66) showed that there exists a constant $C>0$ s.t.

$$
\left\|f g \mid W_{2}^{m}\right\| \leq C\left(\left\|f\left|W_{2}^{m}\|\cdot\| g\right| L_{\infty}\right\|+\left\|f\left|L_{\infty}\|\cdot\| g\right| W_{2}^{m}\right\|\right)
$$

holds for all $f, g \in W_{2}^{m} \cap L_{\infty}$.
Theorem. (Peetre '76, Runst '86) Let A be either isotropic Sobolev spaces W_{p}^{m} (with $m \in \mathbb{N}_{0}, 1<p<\infty$) or Besov spaces $B_{p, p}^{t}$ (with $t>0,1 \leq p \leq \infty)$. Then there exists a constant $C>0$ s.t.

$$
\|f g \mid A\| \leq C\left(\left\|f|A\|\cdot\| g| L_{\infty}\right\|+\left\|f\left|L_{\infty}\|\cdot\| g\right| A\right\|\right)
$$

holds for all $f, g \in A \cap L_{\infty}$.

Dominating mixed smoothness is different

Normally, spaces of dominating mixed smoothness $(d>1)$ have similar properties as isotropic spaces with $d=1$. However in the case of Moser-type inequality, the picture is different.

Theorem. Let $d>1$. By $S A$ we denote the Sobolev spaces $S_{p}^{m} W$ (with $m \in \mathbb{N}, 1<p<\infty)$ or Besov spaces $S_{p, p}^{t} B$ (with $\left.t>1 / p, 1 \leq p \leq \infty\right)$.
Then there is no constant $C>0$ s.t.

$$
\|f g \mid S A\| \leq C\left(\left\|f|S A\|\cdot\| g| L_{\infty}\right\|+\left\|f\left|L_{\infty}\|\cdot\| g\right| S A\right\|\right)
$$

holds for all $f, g \in S A$.
Remark. If $m=0$ (in $S_{p}^{m} W$) or $d=1$ we go back to the isotropic case.

Thank you very much!

