FSDONA 9

A. Yu. Golovko

Steklov Mathematical Institute of RAS

Embedding theorems of anisotropic Sobolev spaces on irregular domains

Praha, 9 Jule 2016

《曰》 《聞》 《臣》 《臣》 三臣 …

In 1938, for bounded domains $G \subset \mathbb{R}^n$ satisfying the cone condition, S.L. Sobolev established an embedding theorem $W_p^s(G) \subset L_q(G)$ characterized by the inequality

$$\|f\|_{L_q(G)} \leq C \|f\|_{W^s_p(G)} = C \left(\sum_{|a|=s} \|D^{\alpha}f\|_{L_p(G)} + \|f\|_{L_p(G)} \right),$$

where $1 and <math>s \in \mathbb{N}$, provided that

$$s-\frac{n}{p}+\frac{n}{q}\geqslant 0.$$

Later, this theorem was extended to more general classes of domains.

ション ふゆ アメリア メリア しょうくの

We will use the following notations:

$$ho(x) = \operatorname{dist}(x, \mathbb{R}^n \setminus G), ext{ where } G \subset \mathbb{R}^n ext{ is domain} \ B(x, R) = \{y : |y - x| < R\}.$$

Definition. For $\sigma \ge 1$, a domain $G \subset \mathbb{R}^n$ is called the domain with the flexible σ -cone condition if, for some $T_0 > 0$, $\varkappa > 0$ and any $x \in G$, there exists a piecewise smooth path $\gamma : [0, T_0] \to G, \gamma(0) = x, |\gamma'| \le 1$ almost everywhere, such that $\rho(\gamma(t)) \ge \varkappa t^{\sigma}$ for $0 < t = T_0$.

In 2001, O.V. Besov proved this theorem for domains with the flexible σ -cone condition provided that the following expression holds:

$$s-\frac{\sigma(n-1)+1}{p}+\frac{n}{q} \ge 0.$$

In 2010, O.V. Besov extended this embedding theorem to the case of norms of a more general form (which includes the sum of norms of only part of the generalized partial derivatives of order s).

Theorem 1 (G., 2015). Let G be a domain with the flexible σ -cone condition, $1 \leq p_j, q, r < \infty, p_j < q, r \leq q, p_j > 1, s_j \in \mathbb{N}$, $l \in \mathbb{Z}_+$, $l < s_j$ for $j = \overline{1, n}$. Then the estimate

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leqslant C \left(\sum_{j=1}^n \left\|\frac{\partial^{s_j}f}{\partial x_j^{s_j}}\right\|_{L_{p_j}(G)} + \|f\|_{L_r(G)}\right)$$
(1)

is valid for functions f with finite right-hand side provided that the following expression holds for all $j = \overline{1, n}$:

$$I - \frac{n}{q} \leq s_j - (\sigma - 1) \sum_{i=1, i \neq j}^n (s_i - 1) - \frac{\sigma(n-1) + 1}{p_j}.$$
 (2)

In isotropic case $(s_j = s, p_j = p \text{ for } j = \overline{1, n})$ theorem 1 coincides with embedding theorem which O.V. Besov proved in 2010.

This theorem is sharp in the class of domains with the flexible σ -cone condition.

In 1959, E. Gagliardo and L. Nirenberg established the following inequality for domains $G \subset \mathbb{R}^n$ with smooth boundary:

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leqslant C \left(\|f\|_{L_r(G)}^{1-\theta} \left(\sum_{|\alpha|=s} \|D^{\alpha}f\|_{L_p(G)} \right)^{\theta} + \|f\|_{L_{\tilde{p}}(G)} \right),$$

where $1 \le p, \tilde{p}, q, r < \infty, s \in N, l \in Z_+, l < s, \frac{l}{s} < \theta < 1$ provided Gagliardo-Nirenberg equality:

$$I - rac{n}{q} = heta\left(s - rac{n}{p}
ight) + (1 - heta)\left(-rac{n}{r}
ight).$$

In 1951 V.P. Il'in established a Gagliardo-Nirenberg type multiplicative inequality for domains satisfying the cone condition in the case $1 \le p, r \le q < \infty, l = 0$.

ション ふゆ く 山 マ ふ し マ うくの

Theorem 2 (G., 2015). Let G be a domain with the flexible σ -cone condition, $1 \leq p_j, q, r < \infty, p_j < q, r \leq q, p_j > 1$, $s_j \in \mathbb{N}$, $l \in \mathbb{Z}_+, l < s_j, 0 < \theta < 1$ for $j = \overline{1, n}$. Let r < q if $l = 0, \sigma = 1$. Then the Gagliardo-Nirenberg type multiplicative inequality

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leqslant C \left(\|f\|_{L_r(G)}^{1-\theta} \left(\sum_{j=1}^n \left\| \frac{\partial^{s_j}f}{\partial x_j^{s_j}} \right\|_{L_{p_j}(G)} \right)^{\theta} + \|f\|_{L_r(G)} \right)$$

is valid for all functions *f* with finite right-hand side provided that the expression

$$egin{aligned} &I-rac{n}{q}\leqslant heta\left(s_j-(\sigma-1)\sum\limits_{i=1,i
eq j}^n(s_i-1)-rac{\sigma(n-1)+1}{p_j}
ight)+(1- heta)\left(-rac{n\sigma}{r}-(\sigma-1)\left(\sum\limits_{i=1}^ns_i-n
ight)
ight)\ ext{holds for }j=\overline{1,n}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

We constructed domain with the flexible σ -cone condition, for which inequality from theorem 2 fails for $1 \leq p_j, q, r < \infty, s_j \in \mathbb{N}$, $l \in \mathbb{Z}_+, l < s_j, 0 < \theta < 1, \sigma \ge 1, \frac{n}{q} < \frac{n}{r} + l$ (for $j = \overline{1, n}$), when expression

$$l - \frac{n}{q} > \theta\left(s_j - (\sigma - 1)\sum_{i=1, i \neq j}^n (s_i - 1) - \frac{\sigma(n-1) + 1}{p_j}\right) + (1 - \theta)\left(-\frac{n}{r}\right)$$

ション ふゆ く 山 マ チャット しょうくしゃ

holds for some $j \in \{1, n\}$.

Thus, for $\sigma = 1$, theorem 2 is sharp.

For proof of results we use averaging from O.V. Besov work "Integral estimates for differentiable functions on irregular domains":

$$\left(D^{\beta}f\right)_{t}(x) = \int K\left(y, r_{\Gamma}(t), \Gamma(t, x)\right) D^{\beta}f(y) dy$$

where $|\beta| = I$, and averaging kernel $K(\cdot, r_{\Gamma}(t), \Gamma(t, x) - x) \in C_0^{\infty}(B(\Gamma(t, x), r_{\Gamma}(t)))$, and also satisfies the certain relations.

One can prove that for almost every $x \in G$

$$\lim_{t\to+0} \left(D^{\beta}f\right)_t(x) = D^{\beta}f(x).$$

ション ふゆ く 山 マ チャット しょうくしゃ

From Newton-Leibniz formula it follows that $|D^{\beta}f(x)| \leq \int_{0}^{T} |\frac{\partial}{\partial t} (D^{\beta}f)_{t}(x)| dt + |(D^{\beta}f)_{T}(x)|$ for all $T \in (0, T_{0}]$ (we consider σ -cone with different lengths T). Estimating terms from right part of the last inequality, we obtain

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leqslant C\left(\sum_{j=1}^n T^{M_j} \left\|\frac{\partial^{s_j}f}{\partial x_j^{s_j}}\right\|_{L_{p_j}(G)} + T^{M_0}\|f\|_{L_r(G)}\right),$$

The last estimation implies the embedding theorem.

One can obtain the Gagliardo-Nirenberg type multiplicative inequality, using the last estimate and several simply computations.

ション ふゆ く 山 マ チャット しょうくしゃ

Let
$$1 \leq m \leq n, 1 \leq i_1 < i_2 < \ldots < i_m = n$$
.
If $\alpha = (\alpha_1, \ldots, \alpha_{i_{j-1}}, \alpha_{i_{j-1}+1}, \ldots, \alpha_{i_j}, \alpha_{i_j+1}, \ldots, \alpha_n)$, then
 $\alpha^j = (0, \ldots, 0, \alpha_{i_{j-1}+1}, \ldots, \alpha_{i_j}, 0, \ldots, 0)$.
Later norm of anisotropic Sobolev space will include next sum:

$$\sum_{j=1}^m \sum_{\alpha=\alpha^j, |\alpha|=s_j} \|D^{\alpha}f\|_{L_{\rho_j}(G)}.$$

If m = 1 then it is the sum of norms of all generalized partial derivatives of order s:

$$\sum_{|\alpha|=s} \|D^{\alpha}f\|_{L_p(G)},$$

If m = n then it is the sum of norms of only unmixed generalized partial derivatives of order s_j :

$$\sum_{i=1}^{n} \left\| \frac{\partial^{s_{j}} f}{\partial x_{i}^{s_{j}}} \right\|_{L_{p_{j}}(G)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 1' (G., 2015). Let G be a domain with the flexible σ -cone condition, $\sigma \ge 1$; $s_j, m \in \mathbb{N}, l \in \mathbb{Z}_+, 0 < \theta < 1, 1 \le m \le n$, $l < s_j, 1 \le q, r < \infty, p_j < q, r \le q, 1 < p_j < \infty$ for $j = \overline{1, m}$. Then the estimate

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_{q}(G)} \leq C \left(\sum_{j=1}^{m} \sum_{\alpha=\alpha^{j}, |\alpha|=s_{j}} \|D^{\alpha}f\|_{L_{p_{j}}(G)} + \|f\|_{L_{r}(G)} \right)$$
(3)

is valid for functions f with finite right-hand side provided that the following expression holds for all $j = \overline{1, m}$:

$$l - \frac{n}{q} \leq s_j - (\sigma - 1) \sum_{i=1, i \neq j}^m (s_i - 1) - \frac{\sigma(n-1) + 1}{p_j}.$$
 (4)

In isotropic case this theorem coincides with theorem which O.V. Besov proved in 2010.

This theorem is sharp in the class of domains with the flexible σ -cone condition.

Theorem 2' (G., 2015). Let G be a domain with the flexible σ -cone condition, $\sigma \ge 1$; $s_j, m \in \mathbb{N}, l \in \mathbb{Z}_+, 0 < \theta < 1, 1 \le m \le n$, $l < s_j, 1 \le q, r < \infty, p_j < q, r \le q, 1 < p_j < \infty$ for $j = \overline{1, m}$. Let r < q if $l = 0, \sigma = 1$. Then the Gagliardo-Nirenberg type multiplicative inequality

$$\sum_{|\alpha|=l} \|D^{\alpha}f\|_{L_q(G)} \leq C\left(\|f\|_{L_r(G)}^{1-\theta}\left(\sum_{j=1}^m \sum_{\alpha=\alpha^j, |\alpha|=s_j} \|D^{\alpha}f\|_{L_{\rho_j}(G)}\right)^{\theta} + \|f\|_{L_r(G)}\right)$$

is valid for all functions f with finite right-hand side provided that the expression

$$I - \frac{n}{q} \leqslant \theta \left(s_j - (\sigma - 1) \sum_{i=1, i \neq j}^m (s_i - 1) - \frac{\sigma(n-1) + 1}{p_j} \right) + (1 - \theta) \left(-\frac{n\sigma}{r} - (\sigma - 1) \left(\sum_{i=1}^m s_i - m \right) \right) \quad \text{holds for all } j = \overline{1, m}.$$

If boundary of domain is smooth then theorem 2' coincides with Gagliardo-Nirenberg result.

We constructed domain with the flexible σ -cone condition, for which inequality from theorem 2' fails for $1 \leq p_j, q, r < \infty$, $s_j, m \in \mathbb{N}, l \in \mathbb{Z}_+, l < s_j, 0 < \theta < 1, \sigma \ge 1, \frac{n}{q} < \frac{n}{r} + l, 1 \leq m \leq n$ (for all $j = \overline{1, m}$) when the following expression

$$l-\frac{n}{q} > \theta\left(s_j - (\sigma-1)\sum_{i=1, i\neq j}^m (s_i-1) - \frac{\sigma(n-1)+1}{p_j}\right) + (1-\theta)\left(-\frac{n}{r}\right)$$

ション ふゆ く 山 マ ふ し マ うくの

holds for some $j \in \{1, n\}$.

Thus, for $\sigma = 1$ theorem 2' is sharp.

Gagliardo and Nirenberg proved the following miltiplicative inequality without the second term in right part for unbounded domain with smooth boundary

$$\sum_{|\alpha|=l} \|D^{\alpha}f\|_{L_q(G)} \leq C \|f\|_{L_r(G)}^{1-\theta} \left(\sum_{|\alpha|=s} \|D^{\alpha}f\|_{L_p(G)}\right)^{\theta}$$

The question arises whether the multiplicative inequality

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leqslant C \left(\|f\|_{L_r(G)}\right)^{1-\theta} \left(\sum_{j=1}^m \sum_{\alpha=\alpha^j, |\alpha|=s_j} \|D^{\alpha}f\|_{L_{p_j}(G)}\right)^{\theta}$$

ション ふゆ アメリア メリア しょうくの

is valid for irregular unbounded domain.

In the case $\sigma > 1$, the answer is negative. Suppose that there exist balls $B(x_R, R)$ of arbitrary radius R > 0 that lie in the domain. Let $\xi \in C_0^{\infty}(B(0,1)), \xi \neq 0$. Consider the function $\xi_R = \xi\left(\frac{x-x_R}{R}\right)$. Letting $R \to 0$ u $R \to \infty$, we find that the last inequality can hold only if the following expression is satisfied for $j = \overline{1, m}$

$$I - \frac{n}{q} = \theta\left(s_j - \frac{n}{p_j}\right) + (1 - \theta)\left(-\frac{n}{r}\right),$$

but for these values of parametrs multiplicative inequality also fails for some unbounded domains with the flexible σ -cone condition.

For $\sigma = 1$ some generalization is established.

Definition 2. A domain $G \subset \mathbb{R}^n$ is called a domain with unbounded flexible cone condition if, for some $\varkappa > 0$ and any $x \in G$, there exists a piecewise smooth path $\gamma : [0, \infty) \to G, \gamma(0) = x, |\gamma'| \leq 1$ almost everywhere, such that $\rho(\gamma(t)) \geq \varkappa t$ for all t > 0.

Theorem 3 (G., 2015). Let $G \subset \mathbb{R}^n$ be a domain with unbounded flexible cone condition, $1 \leq p_j, q, r < \infty, s_j, m \in \mathbb{N}$, $l \in \mathbb{Z}_+, l < s_j, 0 < \theta < 1, p_j < q, r \leq q, p_j > 1, 1 \leq m \leq n$ for $j = \overline{1, m}$. Let r < q if l = 0. Then the multiplicative inequality

$$\sum_{|\alpha|=I} \|D^{\alpha}f\|_{L_q(G)} \leq C \left(\|f\|_{L_r(G)}\right)^{1-\theta} \left(\sum_{j=1}^m \sum_{\alpha=\alpha^j, |\alpha|=s_j} \|D^{\alpha}f\|_{L_{p_j}(G)}\right)^{\theta}$$

is valid for functions f with finite right-hand side proveded that expression

$$l - \frac{n}{q} = \theta\left(s_j - \frac{n}{p_j}\right) + (1 - \theta)\left(-\frac{n}{r}\right)$$

is satisfied for all $j = \overline{1, m}$.

A. Yu. Golovko. Additive and Multiplicative Anisotropic Estimates for Integral Norms of Differentiable Functions on Irregular Domains // Proceedings of the Steklov Institute of Mathematics, 2015, Vol. 290, pp. 277-287.

THANK YOU FOR YOUR ATTENTION!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで