M. L. Goldman
Peoples Friendship University of Russia (Moscow)

ESTIMATES FOR THE NORMS OF MONOTONE OPERATORS ON WEIGHTED ORLICZ-LORENTZ CLASSES

1. Ideal quasi-norm (IQN). Ideal Space (IS).
2. Weighted Orlicz space. Some general properties.
3. Estimates for the norm of monotone operator on the cone of decreasing functions in weighted Orlicz space.
4. Associate space for the cone of decreasing functions in weighted Orlicz space.
5. Applications to weighted Orlicz-Lorentz classes.
M. L. Goldman "Estimates for Restrictions of Monotone Operators on the Cone of Decreasing Functions in Orlicz Spaces", Mathematical Notes, 2016, V. 100, No. 1, pp. 24-37.
M. L. Goldman "Estimates for the norms of monotone operators on weighted Orlicz - Lorentz classes", Doklady Mathematics, 2016 (to appear)
6. Ideal quasi-norm (IQN). Ideal space (IS).

Let $(\Pi, \mathfrak{J}, \eta)$ be a measure space with nonnegative full σ - finite measure η, $L_{0}=L_{0}(\Pi, \mathfrak{J}, \eta)$ be the space of η-measurable functions $f: \Pi \rightarrow R ; L_{0}^{+}=\left\{f \in L_{0}: f \geq 0\right\}$.

Definition 1.1. A mapping $\rho: L_{0}^{+} \rightarrow[0, \infty]$ is an IQN if:
(P1) $\rho(f)=0 \Rightarrow f=0 ; \quad \rho(\alpha f)=\alpha \rho(f), \quad \alpha \geq 0$,
$\exists C \in[1, \infty): \quad \rho(f+g) \leq C[\rho(f)+\rho(g)] ;$
$(P 2) \quad f \leq g \Rightarrow \rho(f) \leq \rho(g) \quad$;- monotonicity
(P3) $\quad f_{n} \uparrow f \Rightarrow \quad \rho\left(f_{n}\right) \uparrow \rho(f)$;- Fatou property
(P4) $\quad \rho(f)<\infty \Rightarrow f<\infty$.

Definition 1.2. Let ρ be an IQN. The IS, generated by ρ is determined as

$$
\begin{equation*}
X=X(\Pi, \mathfrak{I}, \eta)=\left\{f \in L_{0}:\|f\|_{X}=\rho(|f|)<\infty\right\} . \tag{1.1}
\end{equation*}
$$

Theorem 1.3. Let X be IS generated by IQN ρ.
Then, $\quad X$ is quasi-Banach space (Banach space for $C=1$).
Example. Let $\Pi=R_{+}=(0, \infty), \eta=\mu$ be the Lebesgue measure, $L_{0}=M$ be the space of μ measurable functions on R_{+}. The Lebesgue space: $X=L_{p}(v), \quad v \in M: 0<v<\infty$,

$$
\begin{aligned}
& \|f\|_{L_{p}(v)}=\left(\int_{0}^{\infty}|f|^{p} v d x\right)^{1 / p}, \quad 0<p<\infty \\
& \|f\|_{L_{\infty}(v)}=e \operatorname{ess} \sup \left\{|f(x) v(x)|: x \in R_{+}\right\}, \quad p=\infty .
\end{aligned}
$$

2. Weighted Orlicz spaces. Some General properties.

Let Θ be a class of functions $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that $\Phi(0)=0 ; \Phi$ is increasing and left-continuous on $R_{+}=(0, \infty), \quad \Phi(t)<\infty, t \in R_{+}, \quad \Phi(+\infty)=\infty$.

Always we assume that

$$
\begin{equation*}
\Phi \in \Theta ; v \in M, v>0 \text { almost everywhere on } R_{+} . \tag{2.1}
\end{equation*}
$$

For $\lambda>0, f \in M \equiv M\left(R_{+}\right)$we denote

$$
\begin{align*}
& J_{\lambda}(f):=\int_{0}^{\infty} \Phi\left(\lambda^{-1}|f(x)|\right) v(x) d x \tag{2.2}\\
& \|f\|_{\Phi, v}=\inf \left\{\lambda>0: J_{\lambda}(f) \leq 1\right\} . \tag{2.3}
\end{align*}
$$

Definition 2.1. Orlicz space $L_{\Phi, v}$ is defined as the set of functions $f \in M:\|f\|_{\Phi, v}<\infty$. The following result is essentially known (see, for example [2, 11]).

Let $p \in(0,1], \Phi$ be p-convex on $[0, \infty)$, that is for $\alpha, \beta \in(0,1], \alpha^{p}+\beta^{p}=1$,

$$
\begin{equation*}
\Phi(\alpha t+\beta \tau) \leq \alpha^{p} \Phi(t)+\beta^{p} \Phi(\tau), \quad t, \tau \in[0, \infty) \tag{2.4}
\end{equation*}
$$

Theorem 2.2. Let $\Phi \in \Theta, v \in M, v>0$, and condition (2.4) be fulfilled. Then,

1) The triangle inequality takes place in $L_{\Phi, v}$: if $f, g \in L_{\Phi, v}$, then $f+g \in L_{\Phi, v}$, and

$$
\begin{equation*}
\|f+g\|_{\Phi, v} \leq\left(\|f\|_{\Phi, v}^{p}+\|g\|_{\Phi, v}^{p}\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

2) $\|f\|_{\Phi, v}$ is monotone quasi-norm (norm if $p=1$) :

$$
\begin{equation*}
f \in M,|f| \leq g \in L_{\Phi, v} \Rightarrow f \in L_{\Phi, v},\|f\|_{\Phi, v} \leq\|g\|_{\Phi, v}, \tag{2.6}
\end{equation*}
$$

that has Fatou property: $f_{n} \in M, 0 \leq f_{n} \uparrow f \Rightarrow\|f\|_{\Phi, v}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\Phi, v}$.
Conclusion. Under conditions of Theorem $2.2 L_{\Phi, v}$ forms IS which is quasi-Banach space (Banach space if $p=1$) and has Fatou property (all conditions of theorem 1.3 are fulfilled).

Example 2.3. Let $v \in M, v>0 ; p \in R_{+}, \Phi(t)=t^{p}$. Then, Φ is p_{1}-convex with $p_{1}=\min \{p, 1\}$. We have: $L_{\Phi, v}=L_{p}(v)$ is Lebesgue space.

Example 2.4. Let $v \in M, v>0 ; \Phi:[0, \infty) \rightarrow[0, \infty)$ be Young function, that is,

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t} \varphi(\tau) d \tau, \quad 0 \leq \varphi \uparrow ; \varphi(t-0)=\varphi(t)<\infty, t \in R_{+} . \tag{2.8}
\end{equation*}
$$

Then $\Phi \in \Theta$, and $0 \leq \varphi \uparrow \Rightarrow \Phi$ is convex on $[0, \infty)$ (see (2.4) with $p=1$).
For example $\left\{\begin{array}{c}\varphi(0)=0, \varphi(t)=1, t \in(0,1] ; \varphi(t)=e^{t-1}, t \in(1, \infty) \Rightarrow \\ \Phi(t)=t, t \in[0,1] ; \Phi(t)=e^{t-1}, t \in(1, \infty)\end{array}\right.$

Special discretization procedure.

Now we assume that weight - function v satisfies the conditions

$$
\begin{equation*}
0<V(t):=\int_{0}^{t} v d \tau<\infty, \quad \forall t \in R_{+} . \tag{2.9}
\end{equation*}
$$

We require that V is strictly increasing and

$$
\begin{equation*}
V(+\infty)=\infty . \tag{2.10}
\end{equation*}
$$

For fixed $b>1$ let us introduce $\left\{\mu_{m}\right\}$ by formulas

$$
\begin{equation*}
\mu_{m}=V^{-1}\left(b^{m}\right) \Leftrightarrow V\left(\mu_{m}\right)=b^{m}, \quad m \in Z=\{0, \pm 1, \pm 2, \ldots\} \tag{2.11}
\end{equation*}
$$

where V^{-1} is inverse function for continuous increasing function V. Then
$0<\mu_{m} \uparrow ; \quad \lim _{m \rightarrow-\infty} \mu_{m}=0 ; \quad \lim _{m \rightarrow+\infty} \mu_{m}=\infty \Rightarrow R_{+}=\bigcup_{m} \Delta_{m} ; \quad \Delta_{m}=\left[\mu_{m}, \mu_{m+1}\right)$.

3. Estimates for the norms of restrictions of monotone operator on the cones in Orlicz space.

Cone Ω of nonnegative decreasing functions:

$$
\begin{equation*}
\Omega \equiv\left\{f \in L_{\Phi, v}: \quad 0 \leq f \downarrow\right\} ; \tag{3.1}
\end{equation*}
$$

cone $\widetilde{\Omega}$ of nonnegative decreasing step-functions:

$$
\begin{equation*}
\tilde{\Omega} \equiv\left\{f \in L_{\Phi, v}: \quad f=\sum_{m} \alpha_{m} \chi_{\Delta_{m}} ; \quad 0 \leq \alpha_{m} \downarrow\right\} ; \tag{3.2}
\end{equation*}
$$

cone S of nonnegative step-functions

$$
\begin{equation*}
S \equiv\left\{f \in L_{\Phi, v}: \quad f=\sum_{m} \gamma_{m} \chi_{\Delta_{m}} ; \quad \gamma_{m} \geq 0, m \in Z\right\} \tag{3.3}
\end{equation*}
$$

Here, $\Delta_{m}=\left[\mu_{m}, \mu_{m+1}\right), V\left(\mu_{m}\right)=b^{m}, \quad m \in Z$, see special discretization (2.9)-(2.12).

Let $(\Pi, \mathfrak{J}, \eta)$ be a measure space with nonnegative full σ - finite measure η; let $L_{0}=L_{0}(\Pi, \mathfrak{I}, \eta)$ be the set of all η - measurable functions $u: \Pi \rightarrow R ; L_{0}^{+}=\{u \in L: u \geq 0\}$. Let $\quad Y=Y(\Pi, \mathfrak{J}, \eta) \subset L_{0}$ be some IS with a quasi-norm $\|\cdot\|_{Y}$. Let $P: M^{+} \rightarrow L_{0}^{+}$be a monotone operator that is

$$
f, h \in M^{+}, f \leq h \quad \mu \text {-almost everywhere } \Rightarrow P f \leq P h \quad \eta \text {-almost everywhere } .
$$

We consider the restrictions of P on the cones in Orlicz space $L_{\Phi, v}$, and determine norms of restrictions

$$
\begin{align*}
& \|P\|_{\Omega \rightarrow Y}=\sup \left\{\|P f\|_{Y}: \quad f \in \Omega,\|f\|_{\Phi, v} \leq 1\right\} . \tag{3.4}\\
& \|P\|_{\tilde{\Omega} \rightarrow Y}=\sup \left\{\|P f\|_{Y}: \quad f \in \tilde{\Omega},\|f\|_{\Phi, v} \leq 1\right\} . \\
& \|P\|_{S \rightarrow Y}=\sup \left\{\|P f\|_{Y}: \quad f \in S,\|f\|_{\Phi, v} \leq 1\right\} . \tag{3.5}
\end{align*}
$$

Lemma 3.1. Let $\Phi \in \Theta$. We assume that Φ is p-convex on $[0, \infty)$ with some $p \in(0,1]$, and $v>0$ satisfies the conditions (2.9) and (2.10), and realize special discretization (2.11)(2.12) with fixed $b>1$. Then the following two-sided estimates hold

$$
\begin{gather*}
\|P\|_{\tilde{\Omega} \rightarrow Y} \leq\|P\|_{\Omega \rightarrow Y} \leq b^{1 / p}\|P\|_{\tilde{\Omega} \rightarrow Y} \tag{3.6}\\
\|P\|_{\tilde{\Omega} \rightarrow Y} \leq\|P\|_{S \rightarrow Y} \leq c(b)^{1 / p}\|P\|_{\tilde{\Omega} \rightarrow Y} \tag{3.7}\\
c(b)=\left[b(b-1)^{-1}\right]>1
\end{gather*}
$$

where
Theorem 3.2. Let the conditions of Lemma 3.1 be fulfilled. Then the following two-sided estimate holds

$$
\begin{equation*}
c(b)^{-1 / p}\|P\|_{S \rightarrow Y} \leq\|P\|_{\Omega \rightarrow Y} \leq b^{1 / p}\|P\|_{S \rightarrow Y} \tag{3.8}
\end{equation*}
$$

Remark 3.3. Theorem 3.2 shows the main goal of the above special discretization. In this theorem we reduce estimates on the cone of decreasing functions Ω to the estimates on the cone of nonnegative step-functions. In many cases such reduction admits us to apply known results for step-functions or their pure discrete analogues for obtaining needed results on the cone Ω. This approach is realized in Section 4.

4. Associate ideal space for the cone of decreasing functions
 in the weighted Orlicz space

We apply the results of Section 3 to the important partial case when IS Y coincides with weighted Lebesgue space $L_{1}\left(R_{+} ; g\right), g \in M^{+}$, and monotone operator $P=I$. In this case

$$
\begin{equation*}
\|P\|_{\Omega \rightarrow Y}=\sup \left\{\int_{0}^{\infty} f g d t: \quad f \in \Omega ; \quad\|f\|_{\Phi, v} \leq 1\right\}=:\|g\|_{\Omega}^{\prime} . \tag{4.1}
\end{equation*}
$$

According to Theorem 3.2 we have

$$
\begin{equation*}
\|P\|_{\Omega \rightarrow Y} \cong\|P\|_{S \rightarrow Y}, \tag{4.2}
\end{equation*}
$$

where in our case, by special discretization (2.9)-(2.12), and (3.3),

$$
\begin{gather*}
\|P\|_{S \rightarrow Y}=\sup \left\{\sum_{m \in Z} \alpha_{m} g_{m}: \quad \alpha_{m} \geq 0 ; \sum_{m \in Z} \Phi\left(\alpha_{m}\right) \beta_{m} \leq 1\right\}, \tag{4.3}\\
g_{m}=\int_{\Delta_{m}} g d t \geq 0 ; \quad \beta_{m}=\int_{\Delta_{m}} v d t=b^{m}(b-1), \quad m \in Z . \tag{4.4}
\end{gather*}
$$

Note that norm (4.3) coincides with the discrete associated Orlicz norm

$$
\begin{equation*}
\left\|\left\{g_{m}\right\}\right\|_{l_{\rho_{0}, \beta}}=\sup \left\{\sum_{m \in Z} \alpha_{m}\left|g_{m}\right|: \quad \alpha_{m} \geq 0 ; \sum_{m \in Z} \Phi\left(\alpha_{m}\right) \beta_{m} \leq 1\right\}, \tag{4.5}
\end{equation*}
$$

We will describe norm (4.5) explicitly in terms of complementary function Ψ. For simplicity in our discussion we restrict ourselves with the case of N - functions:

$$
\begin{equation*}
\Phi(s)=\int_{0}^{s} \varphi(\tau) d \tau, \quad \varphi \in \Theta \tag{4.6}
\end{equation*}
$$

Ψ be the complementary function for Φ, that is,

$$
\begin{equation*}
\Psi(t)=\int_{0}^{t} \psi(\tau) d \tau, \quad t \in[0, \infty] ; \quad \psi(\tau)=\inf \{\sigma: \quad \varphi(\sigma) \geq \tau\}, \quad \tau \in[0, \infty] . \tag{4.7}
\end{equation*}
$$

Here, ψ is left inverse function for φ. Then, $\psi \in \Theta, \Psi$ is N - function.

Moreover, $\varphi(\sigma)=\inf \{\tau: \psi(\tau) \geq \sigma\}$, so that Φ itself is the complementary function for Ψ. Some known formulas:

$$
\begin{gather*}
\Psi(t)=\sup _{s \geq 0}[s t-\Phi(s)] \\
s t \leq \Phi(s)+\Psi(t), s, t \in[0, \infty) \tag{4.8}
\end{gather*}
$$

Equality in (4.8) takes place if and only if $\varphi(s)=t$ or $\psi(t)=s$.

Examples.

1. $\varphi(s)=s^{p-1}, p \in(1, \infty) \Rightarrow \psi(\tau)=\tau^{p^{\prime}-1}, \quad 1 / p+1 / p^{\prime}=1$;

$$
\Phi(s)=s^{p} / p, \quad \Psi(t)=t^{p^{\prime}} / p^{\prime} .
$$

2. $\quad \varphi(s)=e^{s}-1 \Rightarrow \psi(\tau)=\ln (1+\tau)$;

$$
\Phi(s)=e^{s}-s-1, \Psi(t)=(t+1) \ln (t+1)-t
$$

Theorem 4.3. Let Φ, Ψ be complementary N - functions; let

$$
0<V(t):=\int_{0}^{t} v d \tau<\infty, \quad \forall t \in R_{+}, \quad V(+\infty)=\infty .
$$

For fixed $0<a<1$ the following two-sided estimate holds

$$
\begin{array}{r}
\|g\|_{\Omega}^{\prime} \cong\left\|\rho_{a}(g)\right\|_{\Psi, v}=\inf \left\{\lambda>0: \int_{0}^{\infty} \Psi\left(\lambda^{-1} \rho_{a}(g ; t)\right) v(t) d t \leq 1\right\}, \\
\rho_{a}(g ; t):=V(t)^{-1} \int_{\delta_{a}(t)}^{t}|g(\tau)| d \tau, \quad \delta_{a}(t):=V^{-1}(a V(t)), t \in R_{+} . \tag{4.10}
\end{array}
$$

Remark 4.4. Assume additionally that in Theorem $4.3 \Phi \in\left(\Delta_{2}\right)$. It means that

Then,

$$
\begin{gather*}
\exists C \in(1, \infty): \quad \Phi(2 t) \leq C \Phi(t), \forall t \in R_{+} . \\
\|g\|_{\Omega}^{\prime} \cong\left\|V(t)^{-1} \int_{0}^{t}|g(\tau)| d \tau\right\|_{\Psi, v} . \tag{4.11}
\end{gather*}
$$

5. Applications to weighted Orlicz - Lorentz classes

For $f \in M$ we introduce distribution function

$$
\begin{equation*}
\lambda_{f}(y)=\mu\left\{x \in R_{+}:|f(x)|>y\right\}, y \in R_{+} . \tag{5.1}
\end{equation*}
$$

Let f^{*} be the decreasing rearrangement of function f, that is

$$
\begin{equation*}
f^{*}(t)=\inf \left\{y \in R_{+}: \lambda_{f}(y) \leq t\right\}, t \in R_{+} . \tag{5.2}
\end{equation*}
$$

Weighted Orlicz - Lorentz class $\Lambda_{\Phi, v}=\left\{f \in M\left(R_{+}\right): \quad f^{*} \in L_{\Phi, v}\right\}$ is equipped by

$$
\begin{array}{r}
\left\|f^{*}\right\|_{\Phi, v}=\inf \left\{\lambda>0: \quad J_{\lambda}\left(f^{*}\right) \leq 1\right\} . \\
J_{\lambda}\left(f^{*}\right)=\int_{0}^{\infty} \Phi\left(\lambda^{-1} f^{*}(t)\right) v(t) d t, \quad \lambda>0, \tag{5.4}
\end{array}
$$

We will describe the associated space $\Lambda_{\Phi, v}^{\prime}$ with the norm

$$
\|g\|_{*}^{\prime}:=\sup \left\{\int_{0}^{\infty}|f g| d t: \quad f \in \Lambda_{\Phi, v} ;\left\|f^{*}\right\|_{\Phi, v} \leq 1\right\}
$$

We use the following properties of decreasing rearrangements

$$
\begin{gathered}
0 \leq h \downarrow \Rightarrow \sup \left\{\int_{0}^{\infty}|f g| d t: \quad f \in M, f^{*}=h\right\}=\int_{0}^{\infty} h g^{*} d t ; \\
h \in \Omega \Leftrightarrow \exists f \in \Lambda_{\Phi, v}: f^{*}=h .
\end{gathered}
$$

Then,

$$
\|g\|_{*}^{\prime}=\sup \left\{\int_{0}^{\infty} h g^{*} d t: \quad h \in \Omega ;\|h\|_{\Phi, v} \leq 1\right\}=\left\|g^{*}\right\|_{\Omega}^{\prime} .
$$

To estimate $\left\|g^{*}\right\|_{\Omega}^{\prime}$ we apply Theorem 4.3 and obtain the following result.

Theorem 5.1. Let Φ, Ψ be complementary Young functions; let

$$
0<V(t):=\int_{0}^{t} v d \tau<\infty, \quad \forall t \in R_{+}, \quad V(+\infty)=\infty .
$$

For fixed $0<a<1$ the following two-sided estimate holds

$$
\begin{gather*}
\|g\|_{*}^{\prime} \cong\left\|\rho_{a}\left(g^{*}\right)\right\|_{\Psi, v}=\inf \left\{\lambda>0: \int_{0}^{\infty} \Psi\left(\lambda^{-1} \rho_{a}\left(g^{*} ; t\right)\right) v(t) d t \leq 1\right\}, \tag{5.5}\\
\rho_{a}\left(g^{*} ; t\right):=V(t)^{-1} \int_{\delta_{a}(t)}^{t} g^{*}(\tau) d \tau, \quad \delta_{a}(t):=V^{-1}(a V(t)), t \in R_{+} .
\end{gather*}
$$

Remark 5.2. Assume additionally that in Theorem 5.1 $\Phi \in\left(\Delta_{2}\right)$.Then,

$$
\begin{equation*}
\|g\|_{*}^{\prime} \cong\left\|V(t)^{-1} \int_{0}^{t} g^{*}(\tau) d \tau\right\|_{\Psi, v} \tag{5.6}
\end{equation*}
$$

Let $(\Pi, \mathfrak{J}, \eta)$ be the measure space with nonnegative full σ - finite measure η; let $L_{0}=L_{0}(\Pi, \mathfrak{I}, \eta)$ be the set of all η-measurable functions $u: \Pi \rightarrow R ; L_{0}^{+}=\{u \in L: u \geq 0\}$. Theorem 5.3. Let $Y \subset L_{0}$ be some $I S$ with a quasi-norm $\|\cdot\|_{Y}, P: M^{+} \rightarrow L_{0}^{+}$be a monotone operator satisfying the following condition: there exists $C \in[1, \infty)$ such that

$$
\begin{equation*}
\|P f\|_{Y} \leq C\left\|P f^{*}\right\|_{Y}, \quad f \in M^{+}\left(R_{+}\right) . \tag{5.7}
\end{equation*}
$$

Then,

$$
\|P\|_{\Omega \rightarrow Y} \leq\|P\|_{\Lambda_{\Phi, v}^{+} \rightarrow Y} \leq C\|P\|_{\Omega \rightarrow Y} .
$$

Corollary 5.4. Under assumptions of Theorem 5.3 we have

$$
\|P\|_{\Lambda_{,, v}^{+} \rightarrow Y} \cong\|P\|_{S \rightarrow Y} .
$$

Remark 5.5. In Theorem 5.3 we reduce estimates for monotone operator P on the weighted Orlicz - Lorentz class $\Lambda_{\Phi, v}$ to the estimates on the cone S of nonnegative step-functions from Orlicz space $L_{\Phi, v}$. In many cases such reduction admits us to apply known results for stepfunctions or their pure discrete analogues for obtaining needed results on $\Lambda_{\Phi, v}$.

Remark 5.6. Theorem 5.3 covers the operators

$$
\begin{equation*}
(P f)(x)=\int_{0}^{\infty} k(x, \tau) f(\tau) d \tau, \quad x \in \Pi, \quad f \in M^{+} \tag{5.8}
\end{equation*}
$$

with nonnegative measurable k on $\Pi \times R_{+}$, such that $k(x, \tau)$ is decreasing and rightcontinuous as function of $\tau \in R_{+}$. Indeed, for η-almost all $x \in \Pi$ we have by Hardy's lemma,

$$
(P f)(x) \leq \int_{0}^{\infty} k(x, \tau) f^{*}(\tau) d \tau=\left(P f^{*}\right)(x) .
$$

Then, for IS $Y=Y(\Pi)$ we have $\quad\|P f\|_{Y} \leq\left\|P f^{*}\right\|_{Y}$.

Remark 5.7. Theorem 5.3 covers maximal operator $\mathrm{M}: M_{+}\left(R_{+}\right) \rightarrow M_{+}\left(R_{+}\right)$,

$$
(\operatorname{M} f)(x)=\sup \left\{|\Delta|^{-1} \int_{\Delta} f(\tau) d \tau: \quad \Delta \subset R_{+} ; x \in \Delta\right\},
$$

when $Y=Y\left(R_{+}\right)$is an RIS. Indeed, for any RIS Y there exists unique RIS $\tilde{Y}=\tilde{Y}\left(R_{+}\right)$:

$$
\|g\|_{Y}=\left\|g^{*}\right\|_{\tilde{Y}}, \quad g \in M\left(R_{+}\right) \text {, see [11; Ch. 2]. Let us note that }\left(\mathrm{M} f^{*}\right)^{*}=\mathrm{M} f^{*} . \text { Then, we }
$$ have

$$
\|\mathrm{M} f\|_{Y}=\left\|(\mathrm{M} f)^{*}\right\|_{\tilde{Y}}, \quad\left\|\mathrm{M} f^{*}\right\|_{Y}=\left\|\mathrm{M} f^{*}\right\|_{\tilde{Y}} .
$$

It is well-known that $C \in[1, \infty):(\mathrm{M} f)^{*}(x) \leq C\left(\mathrm{M} f^{*}\right)(x)$, see [11;Ch.2].Therefore,

$$
\|\mathrm{M} f\|_{Y}=\left\|(\mathrm{M} f)^{*}\right\|_{\tilde{Y}} \leq C\left\|\mathrm{M} f^{*}\right\|_{\tilde{Y}}=C\left\|\mathrm{M} f^{*}\right\|_{Y}
$$

This coincides with (5.7) for $P=\mathrm{M}$, and Theorem 5.3 is applicable here.

Thanks for your attention!

References

[1] М.А. Красносельский и Я. Б. Рутицкий, Выпуклье функиии и пространства Орлича, Москва, 1958; English transl. Groningen, 1961.
[2] L. Maligranda, Orlicz spaces and interpolation, Sem. Mat., 5, University Campinas, SP Brazil, 1989.
[3] С. Г. Крейн, Ю. И. Петунин, и Е. М. Семенов, Интерполяц̧ия линейных операторов, Наука, Москва, 1978; English transl. in AMS, Providence, 1982.
[4] H. Hudzik, A. Kaminska, and M. Mastylo, On the dual of Orlicz-Lorentz space, Proc. Amer. Math. Soc., 130, no. 6 (2002), 1645-1654.
[5] В. И. Овчинников, Интерполяция в квазинормированных пространствах Орлича, Функциональный анализ и приложения, 16 (1982), 78-79; English transl. in Funct. Anal . Appl. 16 (1982), 223-224.
[6] П. П. Забрейко, Интерполяционная теорема для линейных операторов, Матем. Заметки, 2 (1967), 593-598.
[7] Л. В. Канторович и Г. П. Акилов, Функциональный анализ, 3-е издание, Наука, Москва, 1984; English Edition: Pergamon Press, Oxford-Elmsford, NY, 1982.
[8] Г. Я. Лозановский, О некоторых банаховых решетках, Сиб. Матем. Журн.,10 (1969), 584-599; English. Transl. in Siberian Math. J. 10 (1969), 419-431.
[9] Г. Я. Лозановский, О некоторых банаховых решетках, 2 , Сиб. Матем. Журн., 12 (1971)," 562-567; English. Transl. in Siberian Math. J. 12 (1971), 419-431.
[10] V. I. Ovchinnikov "The method of orbits in interpolation theory", Math. Reports, 1, Part 2, Harwood Academic Publishers (1984), 349-516.
[11] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988.
[12] M. L Goldman and R. Kerman, "On the principal of duality in Orlicz-Lorentz spaces", Function spaces. Differential Operators. Problems of mathematical education, Proc. Intern. Conf. dedicated to 75-th birthday of prof. Kudrjavtsev, 1, Moscow, 1998, 179-183.
[13] H. Heinig and A. Kufner, "Hardy operators on monotone functions and sequences in Orlicz Spaces", J. London Math. Soc. 53, no. 2 (1996), 256-270.
[14] A. Kaminska and L. Maligranda, "Order convexity and concavity in Lorentz spaces $\Lambda_{p, w}, 0<p<\infty$ ', Studia Math., 160 (2004), 267-286.
[15] A. Kaminska and M. Mastylo, "Abstract duality Sawyer formula and its applications", Monatsh. Math., 151, no. 3 (2007), 223-245.
[16] A. Kaminska and Y. Raynaud, "New formula for decreasing rearrangements and a class of Orlicz-Lorentz spaces", Rev. Mat. Complut., 27 (2014), 587-621.
[17] E. Sawyer, ‘Boundedness of classical operators on classical Lorentz spaces’, Studia Math., 96 (1990), 145-158.

