Norm estimates for the Hardy operator in terms of B_p weights

Santiago Boza santiago.boza@upc.edu. UPC *joint work with* Javier Soria University of Barcelona.

FSDONA2016, Prague. July 2016

Norm estimates and B_p weights

ヨトィヨト

Norm estimates and B_p weights

Sharp dependence of the norm of operators in harmonic analysis, acting in weighted spaces.

- Hardy-Littlewood maximal operator (Buckley, Hytönen, Pérez, Lerner).
- Hilbert and Riesz transforms (Petermichl).
- Calderón-Zygmund operators (Hytönen).

For the classical Hardy-Littlewood maximal operator

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy,$$

where the supremum is taken over all cubes $Q \in \mathbb{R}^n$ containing x. Let w be a weight, that is, a positive locally integrable function, and, for a given measurable set E, let $u(E) = \int_E u(x) \, dx$, and for p > 1, let us define $\sigma = u^{-1/(p-1)}$.

Sharp dependence of the norm of operators in harmonic analysis, acting in weighted spaces.

- Hardy-Littlewood maximal operator (Buckley, Hytönen, Pérez, Lerner).
- Hilbert and Riesz transforms (Petermichl).
- Calderón-Zygmund operators (Hytönen).

For the classical Hardy-Littlewood maximal operator

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy,$$

where the supremum is taken over all cubes $Q \in \mathbb{R}^n$ containing x. Let w be a weight, that is, a positive locally integrable function, and, for a given measurable set E, let $u(E) = \int_E u(x) \, dx$, and for p > 1, let us define $\sigma = u^{-1/(p-1)}$.

We say that u satisfies the A_p condition if

$$[u]_{A_p} = \sup_Q \frac{u(Q)\sigma(Q)^{p-1}}{|Q|^p} < \infty.$$

For p = 1, the class A_1 of weights is characterized as those for which, for all cubes Q,

$$\frac{u(Q)}{|Q|} \le C \inf_{x \in Q} u(x).$$

and the best constant C in the above inequality it is denoted by the $[u]_{A_1}$ constant.

글 에 에 글 어

• B. Muckenhoupt proved the following fundamental result that the maximal operator M is bounded on $L^p(u)$, $1 , if and only if <math>u \in A_p$. S. Buckley proved the sharp dependence of $||M||_{L^p(u)}$ on $[u]_{A_p}$:

$$||M||_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)},$$

and the exponent 1/(p-1) is the best possible.

• The sharp constant in the weak-type boundedness of M on $L^p(u)$ was also studied by Buckley and it was obtained that, for $1 \le p < \infty$

$$\|M\|_{L^p(u)\longrightarrow L^{p,\infty}(u)}\simeq [u]_{A_p}^{1/p}.$$

• As a consequence of the two previous facts, using the trivial embedding $L^p(u) \hookrightarrow L^{p,\infty}(u)$, we obtain

$$[u]_{A_p}^{1/p} \lesssim \|M\|_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)}$$

• B. Muckenhoupt proved the following fundamental result that the maximal operator M is bounded on $L^p(u)$, $1 , if and only if <math>u \in A_p$. S. Buckley proved the sharp dependence of $||M||_{L^p(u)}$ on $[u]_{A_p}$:

$$||M||_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)},$$

and the exponent 1/(p-1) is the best possible.

• The sharp constant in the weak-type boundedness of M on $L^p(u)$ was also studied by Buckley and it was obtained that, for $1\leq p<\infty$

$$\|M\|_{L^p(u)\longrightarrow L^{p,\infty}(u)}\simeq [u]_{A_p}^{1/p}.$$

• As a consequence of the two previous facts, using the trivial embedding $L^p(u) \hookrightarrow L^{p,\infty}(u)$, we obtain

$$[u]_{A_p}^{1/p} \lesssim \|M\|_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)}$$

向下 イヨト イヨト 二日

• B. Muckenhoupt proved the following fundamental result that the maximal operator M is bounded on $L^p(u)$, $1 , if and only if <math>u \in A_p$. S. Buckley proved the sharp dependence of $||M||_{L^p(u)}$ on $[u]_{A_p}$:

$$||M||_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)},$$

and the exponent 1/(p-1) is the best possible.

• The sharp constant in the weak-type boundedness of M on $L^p(u)$ was also studied by Buckley and it was obtained that, for $1 \le p < \infty$

$$\|M\|_{L^p(u)\longrightarrow L^{p,\infty}(u)}\simeq [u]_{A_p}^{1/p}.$$

• As a consequence of the two previous facts, using the trivial embedding $L^p(u) \hookrightarrow L^{p,\infty}(u)$, we obtain

$$[u]_{A_p}^{1/p} \lesssim \|M\|_{L^p(u)} \lesssim [u]_{A_p}^{1/(p-1)}$$

Let us consider $Sf(t) = t^{-1} \int_0^t f(s) \, ds$, the classical Hardy operator, since $(Mf)^* \approx S(f^*)$, where f^* denotes the classical decreasing rearrangement with respect the Lebesgue measure. The action of the maximal operator M on classical Lorentz spaces with respect some weight w, 0 ,

$$\Lambda^{p}(w) := \left\{ f; \ \|f\|_{\Lambda^{p}(w)} := \left(\int_{0}^{\infty} (f^{*}(t))^{p} \ w(t) \ dt \right)^{1/p} < +\infty \right\},$$

can be described looking at the action of the Hardy operator ${\cal S}$ on non-increasing functions.

直入 人 戸入 二

Let us consider $Sf(t) = t^{-1} \int_0^t f(s) \, ds$, the classical Hardy operator, since $(Mf)^* \approx S(f^*)$, where f^* denotes the classical decreasing rearrangement with respect the Lebesgue measure. The action of the maximal operator M on classical Lorentz spaces with respect some weight w, 0 ,

$$\Lambda^p(w) := \left\{ f; \ \|f\|_{\Lambda^p(w)} := \left(\int_0^\infty (f^*(t))^p \ w(t) \ dt \right)^{1/p} < +\infty \right\},$$

can be described looking at the action of the Hardy operator ${\cal S}$ on non-increasing functions.

글 에 제 글 에

For p > 0, we recall here that a positive and measurable function $w \in B_p$ if there exists a positive constant C > 0 such that

$$r^p \int_r^\infty \frac{w(x)}{x^p} \, dx \le C \int_0^r w(x) \, dx.$$

Weights in the B_p class are exactly those for which the maximal operator M is bounded in the Lorentz space $\Lambda^p(w)$ (Ariño and B. Muckenhoupt, 1990). Testing the boundedness of S on characteristic functions, $f(x) = \chi_{(0,r)}(x)$, we obtain the following in terms of this optimal constant C

$$\int_0^\infty \left(\int_0^r \frac{\chi_{(0,x)}(t)}{x} \, dt \right)^p w(x) \, dx \le (1+C) \int_0^r w(x) \, dx.$$

3 K K 3 K

For p > 0, we recall here that a positive and measurable function $w \in B_p$ if there exists a positive constant C > 0 such that

$$r^p \int_r^\infty \frac{w(x)}{x^p} \, dx \le C \int_0^r w(x) \, dx.$$

Weights in the B_p class are exactly those for which the maximal operator M is bounded in the Lorentz space $\Lambda^p(w)$ (Ariño and B. Muckenhoupt, 1990). Testing the boundedness of S on characteristic functions, $f(x) = \chi_{(0,r)}(x)$, we obtain the following in terms of this optimal constant C

$$\int_0^\infty \left(\int_0^r \frac{\chi_{(0,x)}(t)}{x} \, dt \right)^p w(x) \, dx \le (1+C) \int_0^r w(x) \, dx.$$

For this reason it is natural to express the dependence on the B_p condition of the weight in terms of the quantity

$$[w]_{B_p} := 1 + \sup_{r>0} \frac{r^p \int_r^\infty \frac{w(x)}{x^p} \, dx}{\int_0^r w(x) \, dx}.$$

We will consider also the weak-type Lorentz spaces $\Lambda^{p,\infty}(w)$, 0 .

$$\Lambda^{p,\infty}(w) = \left\{ f; \ \|f\|_{\Lambda^{p,\infty}(w)} = \sup_{t>0} f^*(t) \left(\int_0^t w(s) \ ds \right)^{1/p} < \infty \right\},$$

we will denote W the primitive of the weight w.

For this reason it is natural to express the dependence on the B_p condition of the weight in terms of the quantity

$$[w]_{B_p} := 1 + \sup_{r>0} \frac{r^p \int_r^\infty \frac{w(x)}{x^p} \, dx}{\int_0^r w(x) \, dx}.$$

We will consider also the weak-type Lorentz spaces $\Lambda^{p,\infty}(w)$, 0 .

$$\Lambda^{p,\infty}(w) = \left\{ f; \ \|f\|_{\Lambda^{p,\infty}(w)} = \sup_{t>0} f^*(t) \left(\int_0^t w(s) \ ds \right)^{1/p} < \infty \right\},$$

we will denote W the primitive of the weight w.

医下 化医下口

Let us consider the action of the Hardy operator ${\cal S}$ in the following three cases:

$$\begin{array}{ll} \bullet \ ({\sf SS}) & S: L^p_{dec}(w) \longrightarrow L^p(w), \ 0$$

We will use the following notation: $||S||_{p,w}$, $||S||_{(p,\infty),w}$ and $||S||_{p,w}^*$, respectively, for denoting the norm ||S|| in each of the three cases described above.

글 에 에 글 어

There is no weight for which $S: L^{p,\infty}_{dec}(w) \longrightarrow L^p(w)$ is bounded.

Otherwise, the embedding $S:L^{p,\infty}_{dec}(w) \hookrightarrow L^p(w)$ would be continuous and this is equivalent to

$$\int_0^\infty \frac{w(t)}{W(t)} dt < \infty,$$

which is false.

The explicit expression for $||S||_{p,w}$ in case (SS), when p > 1, was completely solved by E. Sawyer (1981):

$$||S||_{p,w} \simeq 1 + \sup_{t>0} \left(\int_t^\infty \frac{w(x)}{x^p} \, dx \right)^{1/p} \left(\int_0^t \left(\frac{W(x)}{x} \right)^{-p'} w(x) \, dx \right)^{1/p'}$$

For $0 , it can be shown that <math>||S||_{p,w} = [w]_{B_p}^{1/p}$ (Carro, Soria, 1993). Thus, whenever $0 , we have that <math>||S||_{p,w} < \infty$ if and only $w \in B_p$.

The estimate for $||S||_{(p,\infty),w}$ in (WW) was characterized by Soria (1998), for 0 :

$$||S||_{(p,\infty),w} = \sup_{t>0} \frac{1}{t} \left(\int_0^t \frac{1}{W^{1/p}(s)} \, ds \right) W^{1/p}(t),$$

where it was also proved that $||S||_{(p,\infty),w} < \infty$ if and only $w \in B_p$.

• • = • • = •

The explicit expression for $||S||_{p,w}$ in case (SS), when p > 1, was completely solved by E. Sawyer (1981):

$$||S||_{p,w} \simeq 1 + \sup_{t>0} \left(\int_t^\infty \frac{w(x)}{x^p} \, dx \right)^{1/p} \left(\int_0^t \left(\frac{W(x)}{x} \right)^{-p'} w(x) \, dx \right)^{1/p'}$$

For $0 , it can be shown that <math>||S||_{p,w} = [w]_{B_p}^{1/p}$ (Carro, Soria, 1993). Thus, whenever $0 , we have that <math>||S||_{p,w} < \infty$ if and only $w \in B_p$. The estimate for $||S||_{(p,\infty),w}$ in (WW) was characterized by Soria (1998), for 0 :

$$||S||_{(p,\infty),w} = \sup_{t>0} \frac{1}{t} \left(\int_0^t \frac{1}{W^{1/p}(s)} \, ds \right) W^{1/p}(t),$$

where it was also proved that $\|S\|_{(p,\infty),w} < \infty$ if and only $w \in B_p$.

Concerning the explicit expression for $\|S\|_{p,w}^*$ in (SW), when p>1, we observe that, as a consequence of the work of Sawyer,

$$\begin{split} \|S\|_{p,w}^* &= \sup_{f \text{ dec}} \frac{\|Sf\|_{L^{p,\infty}(w)}}{\|f\|_{L^p(w)}} = \sup_{t>0} \sup_{f \text{ dec}} \frac{\int_0^\infty f(x)\chi_{(0,t)}(x)\,dx}{\left(\int_0^\infty f^p(s)w(s)\,ds\right)^{1/p}} \frac{W^{1/p}(t)}{t} \\ &\simeq \sup_{t>0} \left(\int_0^t x^{p'-1}W(x)^{1-p'}\,dx\right)^{1/p'} \frac{W^{1/p}(t)}{t}, \end{split}$$

and this is again equivalent to the fact that $w \in B_p$.

3 K K 3 K

We remark that for $0 , the necessary and sufficient condition for the boundedness of <math>S: L^p_{dec}(w) \longrightarrow L^{p,\infty}(w)$ is (Carro, J. Soria [JFA, 1993]; Carro, García del Amo, J. Soria [PAMS, 1996]) that the primitive of the weight $W(t) = \int_0^t w(x) \ dx$ is a *p*-quasi concave function, that is, for all $0 < s \le r < \infty$, $\frac{W(r)}{r^p} \le C \frac{W(s)}{s^p}.$

In fact,

$$||S||_{p,w}^* = \sup_{0 < s \le r < \infty} \frac{s}{r} \left(\frac{W(r)}{W(s)}\right)^{1/p},$$

and $\|S\|_{p,w}^* < \infty$ is a weaker condition than $w \in B_p$, 0 .

★ E ► < E ► </p>

Similarly to what is done for the Hardy-Littlewood maximal operator M, our main interest now is to study good bounds for the exponents α and β , so that the following inequalities hold

$$[w]_{B_p}^{\alpha} \lesssim \|S\| \lesssim [w]_{B_p}^{\beta}, \tag{1}$$

where ||S|| denotes any of the three norms in (SS), (WW), or (SW). The optimal bounds for the exponents α and β in (1) can be determined as follows:

$$\alpha_p := \sup\left\{\alpha \ge 0 : \inf_{w \in B_p} \frac{\|S\|}{[w]_{B_p}^{\alpha}} > 0\right\},\$$

and

$$\beta_p := \inf \bigg\{ \beta \geq 0 : \sup_{w \in B_p} \frac{\|S\|}{[w]_{B_p}^\beta} < \infty \bigg\}.$$

Although not explicitly written in a quantitative form, the dependence on the B_p constant of the norm of the Hardy operator $S: L_{dec}^p(w) \longrightarrow L^p(w)$, which corresponds to the case (SS), are contained in the following theorem:

THEOREM.([Carro, Soria] Can. J. Math.)

Let $0 and <math>w \in B_p$. Then,

(a) If 0 ,

$$||S||_{p,w} = [w]_{B_p}^{1/p}.$$

Hence, with $||S|| = ||S||_{p,w}$, we obtain the optimal estimates $\alpha_p = \beta_p = 1/p$. (b) If p > 1,

$$[w]_{B_p}^{1/p} \le ||S||_{p,w} \le [w]_{B_p}.$$

Moreover, we obtain the estimates $1/p \le \alpha_p \le 1 = \beta_p$.

- Considering characteristic functions $f = \chi_{(0,r)}$, we easily obtain that $\|S\|_{p,w} \ge [w]_{B_p}^{1/p}$.
- To obtain the other estimate we must write the *p*-power of the weighted norm in terms of the distribution function and use optimal estimates of some embeddings between Lorentz spaces.
- The optimality of the exponent in the right hand side follows by considering the family of power weights $w_{\alpha}(x) = x^{\alpha}$, $-1 < \alpha < p 1$, then

$$||S||_{L^p(w_\alpha)} = \frac{p}{p-\alpha-1} = [w_\alpha]_{B_p}.$$

We observe that since $\lim_{\alpha \to (p-1)^{-}} [w_{\alpha}] = \infty$, the sharpness in the upper bound of the statement holds.

- Considering characteristic functions $f = \chi_{(0,r)}$, we easily obtain that $\|S\|_{p,w} \ge [w]_{B_p}^{1/p}$.
- To obtain the other estimate we must write the *p*-power of the weighted norm in terms of the distribution function and use optimal estimates of some embeddings between Lorentz spaces.
- The optimality of the exponent in the right hand side follows by considering the family of power weights $w_{\alpha}(x) = x^{\alpha}$, $-1 < \alpha < p 1$, then

$$||S||_{L^{p}(w_{\alpha})} = \frac{p}{p-\alpha-1} = [w_{\alpha}]_{B_{p}}.$$

We observe that since $\lim_{\alpha \to (p-1)^-} [w_\alpha] = \infty$, the sharpness in the upper bound of the statement holds.

- Considering characteristic functions $f = \chi_{(0,r)}$, we easily obtain that $\|S\|_{p,w} \ge [w]_{B_p}^{1/p}$.
- To obtain the other estimate we must write the *p*-power of the weighted norm in terms of the distribution function and use optimal estimates of some embeddings between Lorentz spaces.
- The optimality of the exponent in the right hand side follows by considering the family of power weights $w_{\alpha}(x) = x^{\alpha}$, $-1 < \alpha < p 1$, then

$$||S||_{L^{p}(w_{\alpha})} = \frac{p}{p-\alpha-1} = [w_{\alpha}]_{B_{p}}.$$

We observe that since $\lim_{\alpha \to (p-1)^-} [w_\alpha] = \infty$, the sharpness in the upper bound of the statement holds.

• • = • • = •

The proofs of the estimates for the norms $||S||_{(p,\infty),w}$ and $||S||_{p,w}^*$, the cases (WW) and (SW), are based in the following improvement of a result due to Y. Sagher, (see also Gogatishvili, Kufner and Persson for some related estimates):

Proposition.

Let m be a positive function and $\varepsilon>0.$ Then,

(i) The existence of two positive constants A and B such that, for every r>0

$$Am(r) \le \int_0^r \frac{m(s)}{s} ds \le Bm(r),$$

implies

$$\frac{A^{\varepsilon+1}}{\varepsilon B^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)} \leq \int_{r}^{\infty} \frac{1}{m^{\varepsilon}(s)} \frac{ds}{s} \leq \frac{B^{\varepsilon+1}}{\varepsilon A^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)}.$$

- * ロ * * 母 * * ヨ * * ヨ * ・ ヨ ・ つへで

(ii) Conversely, the existence of two positive constants C and D such that, for every r>0

$$\frac{C}{m(r)} \le \int_{r}^{\infty} \frac{1}{m(s)} \frac{ds}{s} \le \frac{D}{m(r)},$$

implies

$$\frac{C^{\varepsilon+1}}{\varepsilon D^{\varepsilon}}m^{\varepsilon}(r) \leq \int_{0}^{r}\frac{m^{\varepsilon}(s)}{s}ds \leq \frac{D^{\varepsilon+1}}{\varepsilon C^{\varepsilon}}m^{\varepsilon}(r).$$

医下 化医下口

From the corresponding estimates for $||S||_{(p,\infty),w}$ in (WW) due to Soria, and using Sagher's generalization result to appropriate functions,

Theorem.

If 0 and <math>w is weight in B_p , then

$$[w]_{B_p}^{1/(p+1)} \le \|S\|_{(p,\infty),w} \le [w]_{B_p}^{(p+1)/p}.$$

Moreover, we obtain the following estimates

$$\frac{1}{(p+1)} \le \alpha_p \le 1 \le \beta_p \le \frac{p+1}{p}.$$

Norm estimates and B_p weights

(B) (A) (B) (A)

Let us observe that for power weights in the B_p class, $w_\alpha(t)=t^\alpha$, $-1<\alpha< p-1,$ we can explicitly calculate

$$||S||_{(p,\infty),w_{\alpha}} = \frac{p}{p-\alpha-1} = [w_{\alpha}]_{B_p}.$$

Therefore, we get

$$\frac{1}{(p+1)} \le \alpha_p \le 1 \le \beta_p \le \frac{p+1}{p}.$$

We now study the estimates for $||S||_{p,w}^*$ in (SW).

Theorem.

Let p > 1 and $w \in B_p$. Then,

$$[w]_{B_p}^{1/(pp')} \lesssim \|S\|_{p,w}^* \lesssim [w]_{B_p}.$$

Moreover, we obtain the following estimates

$$\frac{1}{pp'} \le \alpha_p \le \frac{1}{p'} \le \beta_p \le 1.$$

Norm estimates and B_p weights

It follows from the idea and techniques as the case (WW) but for the estimate due to Sawyer (Indiana Univ. Math. J, 1981) valid for p > 1

$$||S||_{p,w}^* \simeq \sup_{t>0} \left(\int_0^t x^{p'-1} W(x)^{1-p'} \, dx \right)^{1/p'} \frac{W^{1/p}(t)}{t}$$

Also, for power weights $w_{\alpha}(t) = t^{\alpha}$, $-1 < \alpha < p - 1$, we can explicitly calculate the above expression and obtain

$$||S||_{p,w_{\alpha}}^{*} \simeq \left(\frac{p-1}{p-\alpha-1}\right)^{1/p'} = \left(\frac{1}{p'}\right)^{1/p'} [w_{\alpha}]_{B_{p}}^{1/p'}.$$

Therefore, we get

$$\frac{1}{pp'} \le \alpha_p \le \frac{1}{p'} \le \beta_p \le 1.$$

Norm estimates and B_p weights

E + 4 E +

Some references

- [AM] M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320. (1990), 727-735.
- [CS] M.J. Carro and J. Soria, *Boundedness of some integral* operators, Canad. J. Math. **45** (1993), 1155–1166.
- [Sag] Y. Sagher, *Real interpolation with weights*, Indiana Univ. Math. J. **30** (1981), 113–146.
- [Saw] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. **96** (1990), 145–158.
- [So] J. Soria, *Lorentz spaces of weak-type*. Quart. J. Math. 49 (1998), 93–103.