On interpolation of spaces of integrable functions with respect to a vector measure

Antonio Manzano

Universidad de Burgos

Joint work with R. del Campo, A. Fernández, F. Mayoral and F. Naranjo
(from Universidad de Sevilla)

Function Spaces, Differential Operators and Nonlinear Analysis
Prague (Czech Republic), 4-9 July, 2016
• Let \((\Omega, \Sigma)\) be a measurable space and \(\mu\) a \(\sigma\)-finite measure on \((\Omega, \Sigma)\). If \(1 \leq p_0 \neq p_1 \leq \infty\), \(0 < \theta < 1\), \(0 < q \leq \infty\) and \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}\),

\[
(L^{p_0}(\mu), L^{p_1}(\mu))_{\theta,q} = L^{p,q}(\mu),
\]

with equivalence of quasi-norms. In particular,

\[
(L^1(\mu), L^\infty(\mu))_{1-\frac{1}{p},p} = L^p(\mu), \quad 1 < p < \infty.
\]

• If \(m\) is a vector measure, then a similar result does not hold. Thus,

\[
(L^1(m), L^\infty(m))_{1-\frac{1}{p},p} \subsetneq L^p(m), \quad 1 < p < \infty.
\]

The inclusion \(L^\infty(m) \subseteq L^1(m)\) is weakly compact and thus, by Beauzamy’s result, \((L^1(m), L^\infty(m))_{1-\frac{1}{p},p}\) is reflexive for \(1 < p < \infty\).

Theorem (Beauzamy, Lecture Notes in Math. (1978))

Let \(0 < \theta < 1\) and \(1 < q < \infty\).

\((A_0, A_1)_{\theta,q}\) is reflexive \(\iff I : A_0 \cap A_1 \to A_0 + A_1\) is weakly compact.

However, \(L^p(m), p > 1\), is not reflexive whenever \(L^1(m) \neq L^1_w(m)\).

If $0 < \theta < 1$, $0 < q \leq \infty$ and $\frac{1}{p} = 1 - \theta$, it holds

$$(L^1(m), L^\infty(m))_{\theta,q} = (L^1_w(m), L^\infty(m))_{\theta,q} = L^{p,q}(\|m\|).$$

- The **Lorentz space** $\Lambda^q_{\varphi}(\|m\|)$

For $0 < q \leq \infty$ and a non-negative function φ on $(0, \infty)$, $\Lambda^q_{\varphi}(\|m\|)$ is the space of (m-a.e. equivalence classes of) scalar measurable functions on Ω s.t.

$$\|f\|_{\Lambda^q_{\varphi}(\|m\|)} := \left(\int_0^\infty (\varphi(t)f^*_t(t))^q \frac{dt}{t}\right)^{\frac{1}{q}} < \infty$$

(with the usual modification for $q = \infty$). Here f^*_t is the decreasing rearrangement (w.r.t. m) of f given by

$$f^*_t := \inf\{s > 0 : \|m\|(\{w \in \Omega : |f(w)| > s\}) \leq t\},$$

and $\|m\|(A) := \sup\{|\langle m, x^* \rangle| (A) : x^* \in B(X^*)\}$ the semivariation of m. If $\varphi(t) = t^{1/p}$, $\Lambda^q_{\varphi}(\|m\|) = L^{p,q}(\|m\|)$.

Antonio Manzano
Universidad de Burgos

On interpolation of spaces of integrable functions with respect to a vector measure
Let \(\Omega \) be non-empty set, \(\Sigma \) a \(\sigma \)-algebra of \(\Omega \) and \(X \) a Banach space. Let \(m : \Sigma \to X \) be a countably additive vector measure.

\(L^0(m) \) denotes the space of all scalar measurable functions on \(\Omega \). \(f, g \in L^0(m) \) will be identified if are equal \(m \)-a.e., that is, whenever

\[
\|m\|(\{w \in \Omega : f(w) \neq g(w)\}) = 0.
\]

\(f \in L^0(m) \) is called **integrable** (w.r.t. \(m \)) if

i) \(f \in L^1(|\langle m, x^* \rangle|) \), for all \(x^* \in X^* \) (i.e. \(f \) is weakly integrable w.r.t. \(m \))

ii) given any \(A \in \Sigma \), there exists an element \(\int_A f dm \in X \) such that

\[
\langle \int_A f dm, x^* \rangle = \int_A f \, d \langle m, x^* \rangle, \text{ for all } x^* \in X^*.
\]

Let

\[
L^1_w(m) := \{ f : f \text{ is weakly integrable} \},
\]

\[
L^1(m) := \{ f : f \text{ is integrable} \},
\]

endowed with the norm

\[
\|f\|_1 := \sup \left\{ \int_\Omega |f| \, d \langle m, x^* \rangle : x^* \in B(X^*) \right\}.
\]
• Given $1 < p < \infty$, $f \in L^0(m)$ is said to be

 i) **weakly p-integrable (w.r.t. m)** if $|f|^p \in L^1_w(m)$,

 ii) **p-integrable (w.r.t. m)** if $|f|^p \in L^1(m)$,

Let

\[
L^p_w(m) := \{ f : f \text{ is weakly } p\text{-integrable} \},
\]

\[
L^p(m) := \{ f : f \text{ is } p\text{-integrable} \},
\]

with the norm

\[
\| f \|_p := \sup \left\{ \left(\int_{\Omega} |f|^p \, d|\langle m, x^* \rangle| \right)^{1/p} : x^* \in B(X^*) \right\}.
\]

• Some properties:

- $L^p(m)$ is a Banach lattice with order continuous norm.
- $L^p_w(m)$ is a Banach lattice with the Fatou property.
- $L^p(m)$ and $L^p_w(m)$ may not be reflexive for $p > 1$.
- If $1 < p_1 < p_2 < \infty$, then

 \[
 L^\infty(m) \subseteq L^{p_2}(m) \subseteq L^{p_2}_w(m) \subseteq L^{p_1}(m) \subseteq L^{p_1}_w(m) \subseteq L^1(m) \subseteq L^1_w(m).
 \]

When m is a finite positive scalar measure, $\|m\|$ and m coincide. But in general, for an arbitrary vector measure m, it holds that

$$L^p(m) \neq L^p(\|m\|) := L^{p,\|m\|}, \quad 1 \leq p < \infty.$$

We have the following continuous inclusions:

$$L^\infty(m) \subseteq L^{p,1}(\|m\|) \subseteq L^p(\|m\|) \subseteq L^p(m) \subseteq L^p(m) \subseteq L^p(m) \subseteq L^p,\infty(\|m\|) \subseteq L^{1,\infty}(\|m\|).$$
• A non-negative function ρ defined on $\mathbb{R}^+ := (0, \infty)$ belongs to the class $Q(0, 1)$ if there exists $0 < \varepsilon < 1/2$ such that

$$\rho(t)t^{-\varepsilon} \text{ is non-decreasing (↑)} \text{ and } \rho(t)t^{-(1-\varepsilon)} \text{ is non-increasing (↓)}.$$

• For a quasi-Banach couple (X_0, X_1), the real interpolation space $(X_0, X_1)_{\rho,q}$, $\rho \in Q(0, 1)$, $0 < q \leq \infty$, consists of all $x \in X_0 + X_1$ for which

$$\|x\|_{\rho,q} := \left(\int_0^\infty \left[\frac{K(t, x; X_0, X_1)}{\rho(t)} \right]^q \frac{dt}{t} \right)^{1/q} < \infty,$$

(with the usual modification for $q = \infty$), where the K-functional is defined for $t > 0$ as

$$K(t, x; X_0, X_1) = \inf \{ \|x_0\|_{X_0} + t\|x_1\|_{X_1} : x = x_0 + x_1, x_i \in X_i \}, x \in X_0 + X_1.$$

• When $\rho(t) = t^\theta$, $0 < \theta < 1$, we get the classical space $(X_0, X_1)_{\theta,q}$.

• It holds that

$$(L^1(\mu), L^\infty(\mu))_{\rho(t) = t^{1-\frac{1}{p}(1+|\log t|)^{-\alpha}}, q} = L^{p,q}(L)_{\alpha}(\mu).$$
Other similar classes of functions

- $B_K : \rho \in C(\mathbb{R}^+) \text{ non-decreasing such that}$
 \[\bar{\rho}(t) = \sup_{s>0} \frac{\rho(ts)}{\rho(s)} < \infty \text{ for every } t > 0, \]
 \[\int_0^\infty \min\{1, \frac{1}{t}\} \bar{\rho}(t) \frac{dt}{t} < \infty. \]

- $B_\psi : \rho \in C^1(\mathbb{R}^+) \text{ satisfying}$
 \[0 < \inf_{t>0} \frac{t\rho'(t)}{\rho(t)} \leq \sup_{t>0} \frac{t\rho'(t)}{\rho(t)} < 1. \]

- $\mathcal{P}^{+-} : \rho(t) \text{ non-decreasing, } \rho(t)/t \text{ non-increasing and}$
 \[\bar{\rho}(t) = o(\max\{1, t\}) \text{ as } t \to 0 \text{ and } t \to \infty. \]

Proposition (Gustavsson, Math. Scand. (1978) / Persson, Math. Scand. (1986))

a) $B_\psi \subseteq Q(0,1) \subseteq \mathcal{P}^{+-}.$
b) $B_\psi \subseteq B_K \subseteq \mathcal{P}^{+-}.$
c) If $\rho \in \mathcal{P}^{+-}$, there exists $\varphi \in B_\psi$ such that $\rho \approx \varphi.$

- The K-functional for $(L^1(\|m\|), L^\infty(m))$ and $(L^{1,\infty}(\|m\|), L^\infty(m))$:

Proposition

For each $f \in L^1(\|m\|)$,

$$K(t, f; L^1(\|m\|), L^\infty(m)) = \int_0^\infty \min\{t, \|m\|_f(s)\} \, ds = \int_0^t f_*(s) \, ds,$$

where $\|m\|_f(t) := \|m\|(\{w \in \Omega : |f(w)| > t\})$.

Proposition

It holds that

$$\sup_{s>0} s \min\{t, \|m\|_f(s)\} \leq K(t, f; L^{1,\infty}(\|m\|), L^\infty(m)),$$

for all $f \in L^{1,\infty}(\|m\|)$. In particular (taking $s := f_*(t)/2$),

$$tf_*(t) \leq K(t, f; L^{1,\infty}(\|m\|), L^\infty(m)).$$

The next result follows from these estimates for the K-functional and weighted Hardy’s inequality for non-increasing functions:

Theorem

Let $\rho \in Q(0, 1)$, $0 < q \leq \infty$ and $\varphi(t) = \frac{t}{\rho(t)}$. Then,

$$(L^1(\|m\|), L^\infty(m))_{\rho,q} = (L^{1,\infty}(\|m\|), L^\infty(m))_{\rho,q} = \Lambda^q_{\varphi}(\|m\|).$$

In particular, if $0 < \theta < 1$, it holds that

$$(L^1(\|m\|), L^\infty(m))_{\theta,q} = (L^{1,\infty}(\|m\|), L^\infty(m))_{\theta,q} = L^{\frac{1}{1-\theta},q}(\|m\|).$$
Using the last theorem, reiteration and the continuous inclusions
\[L^\infty (m) \subseteq L^r (\| m \|) \subseteq L^r (m) \subseteq L^r_w (m) \subseteq L^r,\infty (\| m \|), \quad r \geq 1, \]

Theorem

If \(1 \leq p_0 \neq p_1 \leq \infty, \rho \in Q(0, 1), \varphi(t) = \frac{\frac{1}{t^{p_0}}}{\rho \left(t^{\frac{1}{p_0} - \frac{1}{p_1}} \right)} \) and \(0 < q \leq \infty, \)
\[(L^{p_0}(m), L^{p_1}(m))_{\rho, q} = (L^{p_0}_w(m), L^{p_1}(m))_{\rho, q} = (L^{p_0}(m), L^{p_1}_w(m))_{\rho, q} = \Lambda^q (\| m \|). \]

In particular, if \(0 < \theta < 1 \) and \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \), it holds that
\[(L^{p_0}(m), L^{p_1}(m))_{\theta, q} = (L^{p_0}_w(m), L^{p_1}(m))_{\theta, q} = (L^{p_0}_w(m), L^{p_1}_w(m))_{\theta, q} = L^{p, q}(\| m \|). \]

Corollary

For \(\rho(t) = t^{1-\frac{1}{p}}(1 + | \log t |)^{-\alpha}, 1 < p < \infty, 0 < q \leq \infty \) and \(\alpha \in \mathbb{R}, \)
\[(L^1(m), L^\infty (m))_{\rho, q} = (L^1_w(m), L^\infty (m))_{\rho, q} = L^{p, q}(\log L)^\alpha (\| m \|). \]

When \(\varphi(t) = t^{\frac{1}{p}}(1 + | \log t |)^{\alpha}, \Lambda^q (\| m \|) = L^{p, q}(\log L)^\alpha (\| m \|), \) that can be considered the version of Lorentz-Zygmund space in the vector case.
Theorem

Let $\rho \in Q(0, 1)$, $1 \leq p < \infty$ and $0 < q_0, q, q_1 \leq \infty$.

a) If $\varphi_0 \in Q(0, 1)$,

$$(\Lambda_{\varphi_0}^{q_0}(\|m\|), L^\infty(m))_{\rho,q} = \Lambda_{\varphi}^{q}(\|m\|), \quad \varphi(t) = \frac{\varphi_0(t)}{\rho(\varphi_0(t))}.$$

b) If $\varphi_1 \in Q(0, 1/p)$ (i.e. $\varphi_1(t)t^{-\varepsilon} \uparrow$ and $\varphi_1(t)t^{-(\frac{1}{p}-\varepsilon)} \downarrow$ for some $0 < \varepsilon < \frac{1}{2p}$),

$$(L^p(\|m\|), \Lambda_{\varphi_1}^{q_1}(\|m\|))_{\rho,q} = \Lambda_{\varphi}^{q}(\|m\|), \quad \varphi(t) = \frac{t^{1/p}}{\rho(t^{1/p}/\varphi_1(t))}.$$

c) If $\varphi_i \in Q(0, 1)$, $i = 0, 1$, and $\phi := \frac{\varphi_0}{\varphi_1} \in Q(0, b)$ for some $b \in \mathbb{R}$ (i.e. $\phi(t)t^{-\varepsilon} \uparrow$ and $\phi(t)t^{-(b-\varepsilon)} \downarrow$ for some $0 < \varepsilon < \frac{b}{2}$),

$$(\Lambda_{\varphi_0}^{q_0}(\|m\|), \Lambda_{\varphi_1}^{q_1}(\|m\|))_{\rho,q} = \Lambda_{\varphi}^{q}(\|m\|), \quad \varphi(t) = \frac{\varphi_0(t)}{\rho(\varphi_0(t)/\varphi_1(t))}.$$

Theorem (Fernández, Mayoral, Naranjo and Sánchez-Pérez, Collect. Math. (2010))

Given $1 \leq p_0 \neq p_1 \leq \infty$, $0 < \theta < 1$ and $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$, it holds that

$$[L^{p_0}(m), L^{p_1}(m)][\theta] = [L^{p_0}_w(m), L^{p_1}_w(m)][\theta] = [L^{p_0}_w(m), L^{p_1}_w(m)][\theta] = L^p(m),$$

$$[L^{p_0}(m), L^{p_1}(m)][\theta] = [L^{p_0}_w(m), L^{p_1}_w(m)][\theta] = [L^{p_0}_w(m), L^{p_1}_w(m)][\theta] = L^p_w(m).$$

- Orlicz spaces $L_0^\phi(m)$ and $L_1^\phi(m)$ generalize the spaces $L_0^p(m)$ and $L_1^p(m)$, respectively. We are interested in studying if the following equalities hold:

\[
\begin{align*}
[L_0^\phi(m), L_1^\phi(m)]_{[\theta]} &= [L_0^\phi(m), L_1^\phi(m)]_{[\theta]} = [L_0^\phi(m), L_1^\phi(m)]_{[\theta]} = L_0^\phi(m), \\
[L_0^\phi(m), L_1^\phi(m)]_{[\theta]} &= [L_0^\phi(m), L_1^\phi(m)]_{[\theta]} = [L_0^\phi(m), L_1^\phi(m)]_{[\theta]} = L_1^\phi(m).
\end{align*}
\]

- Given $\phi_0, \phi_1 \in \Delta_2$, $0 < \theta < 1$, $\phi^{-1} = (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^\theta$, do the following equalities hold?

$$ [L^{\phi_0}(m), L^{\phi_1}(m)][\theta] = [L_{w}^{\phi_0}(m), L_{w}^{\phi_1}(m)][\theta] = [L_{w}^{\phi_0}(m), L_{w}^{\phi_1}(m)][\theta] = L^{\phi}(m), $$

$$ [L^{\phi_0}(m), L^{\phi_1}(m)][\theta] = [L_{w}^{\phi_0}(m), L_{w}^{\phi_1}(m)][\theta] = [L_{w}^{\phi_0}(m), L_{w}^{\phi_1}(m)][\theta] = L_{w}^{\phi}(m). $$

- An **N-function** is any function $\phi : [0, \infty) \rightarrow [0, \infty)$ which is
 - strictly increasing, $\phi(0) = 0$,
 - continuous, $\lim_{x \to 0} \frac{\phi(x)}{x} = 0$,
 - convex, $\lim_{x \to \infty} \frac{\phi(x)}{x} = \infty$.

An N-function has the **Δ_2-property** (we write $\phi \in \Delta_2$) if

$$\exists C > 0 \text{ such that } \phi(2x) \leq C\phi(x) \text{ for all } x \geq 0.$$
• The **weak Orlicz space** $L^\phi_w(m)$ (w.r.t. m and ϕ) is defined as

\[
L^\phi_w(m) := \left\{ f \in L^0(m) : \|f\|_{L^\phi_w(m)} < \infty \right\},
\]

where

\[
\|f\|_{L^\phi_w(m)} := \sup \left\{ \|f\|_{L^\phi(||\langle m, x^* \rangle||)} : x^* \in B_{X^*} \right\}
= \sup_{x^* \in B_{X^*}} \inf \left\{ k > 0 : \int_\Omega \phi \left(\frac{|f|}{k} \right) d\|\langle m, x^* \rangle\| \leq 1 \right\}.
\]

$L^\phi_w(m)$ coincides with the intersection of all Orlicz $L^\phi(||\langle m, x^* \rangle||)$, $x^* \in X^*$.

• The **Orlicz space** $L^\phi(m)$ (w.r.t. m and ϕ) is defined by $S(\Sigma)L^\phi_w(m)$.

• If $\phi(x) = x^p$, $L^\phi_w(m)$ and $L^\phi(m)$ correspond to $L^p_w(m)$ and $L^p(m)$, respectively.

• The corresponding **Orlicz classes** (w.r.t. m and ϕ) are given by

\[
O^\phi_w(m) := \{ f \in L^0(m) : \phi(|f|) \in L^1_w(m) \},
\]

\[
O^\phi(m) := \{ f \in L^0(m) : \phi(|f|) \in L^1(m) \}.
\]

It holds that

$O^\phi_w(m) \subseteq L^\phi_w(m)$ and $O^\phi_w(m) \subseteq L^\phi(m)$.
• The **weak Orlicz space** $L^\phi_w(m)$ (w.r.t. m and ϕ) is defined as

$$L^\phi_w(m) := \left\{ f \in L^0(m) : \|f\|_{L^\phi_w(m)} < \infty \right\},$$

where

$$\|f\|_{L^\phi_w(m)} := \sup \left\{ \|f\|_{L^\phi(|\langle m, x^* \rangle|)} : x^* \in B_{X^*} \right\}$$

$$= \sup_{x^* \in B_{X^*}} \inf \left\{ k > 0 : \int_\Omega \phi \left(\frac{|f|}{k} \right) d|\langle m, x^* \rangle| \leq 1 \right\}.$$

$L^\phi_w(m)$ coincides with the intersection of all Orlicz $L^\phi(|\langle m, x^* \rangle|)$, $x^* \in X^*$.

• The **Orlicz space** $L^\phi(m)$ (w.r.t. m and ϕ) is defined by $S(\Sigma)L^\phi_w(m)$.

• If $\phi(x) = x^p$, $L^\phi_w(m)$ and $L^\phi(m)$ correspond to $L^p_w(m)$ and $L^p(m)$, respect.

• The corresponding **Orlicz classes** (w.r.t. m and ϕ) are given by

$$O^\phi_w(m) := \{ f :\in L^0(m) : \phi(|f|) \in L^1_w(m) \},$$

$$O^\phi(m) := \{ f :\in L^0(m) : \phi(|f|) \in L^1(m) \}.$$

When $\phi \in \Delta_2$

$$O^\phi_w(m) = L^\phi_w(m) \text{ and } O^\phi(m) = L^\phi(m).$$
• Let \((X_0, X_1)\) be a couple of Banach lattices on the same measure space and \(0 < \theta < 1\), the \textbf{Calderón’s space} \(X_0^{1-\theta}X_1^\theta\) is

\[
X_0^{1-\theta}X_1^\theta := \{ f \in L^0 : \exists \lambda > 0, \exists f_i \in B_{X_i} \text{ s.t. } |f| \leq \lambda |f_0|^{1-\theta}|f_1|^\theta \},
\]

with the norm

\[
\|f\|_{X_0^{1-\theta}X_1^\theta} := \inf\{\lambda > 0 : |f| \leq \lambda |f_0|^{1-\theta}|f_1|^\theta, f_0 \in B_{X_0}, f_1 \in B_{X_1}\}.
\]

It holds that

\begin{itemize}
 \item [C1] \(X_0 \cap X_1 \subseteq [X_0, X_1][\theta] \subseteq X_0^{1-\theta}X_1^\theta \subseteq [X_0, X_1][\theta] \subseteq X_0 + X_1\).
 \item [C2] If \(X_0\) or \(X_1\) is order continuous, then \([X_0, X_1][\theta] = X_0^{1-\theta}X_1^\theta\).
 \item [C3] If \(X_0\) and \(X_1\) have the Fatou property then \([X_0, X_1][\theta] = X_0^{1-\theta}X_1^\theta\).
\end{itemize}
Given a Banach couple \((X_0, X_1)\) and \(0 < \theta < 1\), the **Gustavsson-Peetre space** \(\langle X_0, X_1, \theta \rangle\) is the Banach space formed by

\[
x \in X_0 + X_1 \text{ for which } \exists (x_k)_{k \in \mathbb{Z}} \subseteq X_0 \cap X_1 \text{ s.t.}
\]

a) \(x = \sum_{k \in \mathbb{Z}} x_k\), where the series converges in \(X_0 + X_1\).

b) \(\exists C > 0 \text{ s.t. for every finite subset } F \subseteq \mathbb{Z} \text{ and every subset of scalars } (\varepsilon_k)_{k \in F}, \text{ with } |\varepsilon_k| \leq 1,\)

\[
\left\| \sum_{k \in F} \frac{\varepsilon_k}{2^{k\theta}} x_k \right\|_{X_0} \leq C \quad \text{and} \quad \left\| \sum_{k \in F} \frac{\varepsilon_k}{2^{k(\theta-1)}} x_k \right\|_{X_1} \leq C.
\]

The norm considered in \(\langle X_0, X_1, \theta \rangle\) is

\[
\|x\|_{\langle X_0, X_1, \theta \rangle} = \inf\{ C > 0 : \text{taken over all } (x_k)_{k \in \mathbb{Z}} \text{ satisfying a) and b})\}.
\]

Moreover,

\[
\text{GP } \langle X_0, X_1, \theta \rangle \subseteq [X_0, X_1][\theta].
\]
Proposition

Let \(\phi_0, \phi_1 \in \Delta_2 \), \(0 < \theta < 1 \) and let \(\phi \) be given by \(\phi^{-1} := (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^{\theta} \). Then

(1) \(L^{\phi_0}(m)^{1-\theta}L^{\phi_1}(m)^{\theta} = L^{\phi}(m) \).

(2) \(L^{\phi_0}_w(m)^{1-\theta}L^{\phi_1}_w(m)^{\theta} = L^{\phi}_w(m) \).

\(L^{\phi}(m) \) is order continuous and \(L^{\phi}_w(m) \) has the Fatou property.

Corollary

Let \(\phi_0, \phi_1 \in \Delta_2 \), \(0 < \theta < 1 \) and \(\phi \) s.t. \(\phi^{-1} := (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^{\theta} \). It holds that

\[[L^{\phi_0}(m), L^{\phi_1}(m)]^{[\theta]} = L^{\phi}(m). \]

\[[L^{\phi_0}_w(m), L^{\phi_1}_w(m)]^{[\theta]} = L^{\phi}_w(m). \]
Some partial ordering relations between N-functions:

$\phi_1 \prec \phi_0$ if $\exists \varepsilon > 0$, $\exists x_0 \geq 0$ s.t. $\phi_1(x) \leq \phi_0(\varepsilon x)$, for all $x \geq x_0$.

$\phi_1 \ll \phi_0$ if $\forall \varepsilon > 0$, $\exists x_\varepsilon \geq 0$ s.t. $\phi_1(x) \leq \phi_0(\varepsilon x)$, for all $x \geq x_\varepsilon$.

Lemma

Let $\phi_0, \phi_1 \in \Delta_2$.

1. If $\phi_1 \prec \phi_0$, then $L_{w}^{\phi_0}(m) \subseteq L_{w}^{\phi_1}(m)$, and $L^{\phi_0}(m) \subseteq L^{\phi_1}(m)$.
2. If $\phi_1 \ll \phi_0$, then $L_{w}^{\phi_0}(m) \subseteq L^{\phi_1}(m)$.

For $\phi_1(x) := x^p$, $\phi_0(x) := x^q$, $1 < p < q$, it follows that $\phi_1 \ll \phi_0$, and therefore the well-known inclusion $L_{w}^{\phi_0}(m) \subseteq L^{\phi_1}(m)$.

- Some partial ordering relations between N-functions:
 \[\phi_1 \prec \phi_0 \text{ if } \exists \varepsilon > 0, \exists x_0 \geq 0 \text{ s.t. } \phi_1(x) \leq \phi_0(\varepsilon x), \text{ for all } x \geq x_0. \]
 \[\phi_1 \ll \phi_0 \text{ if } \forall \varepsilon > 0, \exists x_\varepsilon \geq 0 \text{ s.t. } \phi_1(x) \leq \phi_0(\varepsilon x), \text{ for all } x \geq x_\varepsilon. \]

Lemma

Let $\phi_0, \phi_1 \in \Delta_2, 0 < \theta < 1$ and let ϕ be given by $\phi^{-1} \coloneqq (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^\theta$.

1. If $\phi_1 \prec \phi_0$, then $L_{\phi_0}(m) \subseteq L_{\phi_1}(m)$, and $L_{\phi_0}(m) \subseteq L_{\phi_1}(m)$.
2. If $\phi_1 \ll \phi_0$, then $L_{\phi_0}(m) \subseteq L_{\phi_1}(m)$.
3. If $\phi_1 \prec \phi_0$, then $\phi_1 \prec \phi \ll \phi_0$. If $\phi_1 \ll \phi_0$, then $\phi_1 \ll \phi \ll \phi_0$.

Theorem

Let $\phi_0, \phi_1 \in \Delta_2, 0 < \theta < 1$ and let ϕ be given by $\phi^{-1} \coloneqq (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^\theta$.

If $\phi_1 \ll \phi_0$, it follows that
\[
\langle L_{\phi_0}(m), L_{\phi_1}(m), \theta \rangle = L_{\phi_0}(m).
\]
\[L^\phi_w(m) = \langle L^\phi_0(m), L^\phi_1(m), \theta \rangle \subseteq [L^\phi_0(m), L^\phi_1(m)]^{[\theta]} \]
\[\subseteq [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = (L^\phi_0(w)(m))^{1-\theta}(L^\phi_1(w)(m))^\theta = L^\phi_w(m). \]

Therefore,
\[[L^\phi_0(m), L^\phi_1(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = L^\phi_w(m), \]
and, by \(L^\phi_i(m) \subseteq L^\phi_i(w)(m) \) \((i = 0, 1)\), it also holds that
\[[L^\phi_0(m), L^\phi_1(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = L^\phi_w(m). \]

This gives (i) in the following theorem.

Theorem

Let \(\phi_0, \phi_1 \in \Delta_2, 0 < \theta < 1 \) and let \(\phi \) be given by \(\phi^{-1} := (\phi_0^{-1})^{1-\theta}(\phi_1^{-1})^\theta. \)
If \(\phi_1 \precsim \phi_0 \), then

(i) \([L^\phi_0(m), L^\phi_1(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = L^\phi_w(m).\]

(ii) \([L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = [L^\phi_0(w)(m), L^\phi_1(w)(m)]^{[\theta]} = L^\phi_w(m).\)
Some references